Header

UZH-Logo

Maintenance Infos

AGN-driven galactic outflows: comparing models to observations


Ishibashi, W; Fabian, A C; Arakawa, N (2021). AGN-driven galactic outflows: comparing models to observations. Monthly Notices of the Royal Astronomical Society, 502(3):3638-3645.

Abstract

The actual mechanism(s) powering galactic outflows in active galactic nuclei (AGNs) is still a matter of debate. At least two physical models have been considered in the literature: wind shocks and radiation pressure on dust. Here, we provide a first quantitative comparison of the AGN radiative feedback scenario with observations of galactic outflows. We directly compare our radiation pressure-driven shell models with the observational data from the most recent compilation of molecular outflows on galactic scales. We show that the observed dynamics and energetics of galactic outflows can be reproduced by AGN radiative feedback, with the inclusion of radiation trapping and/or luminosity evolution. The predicted scalings of the outflow energetics with AGN luminosity can also quantitatively account for the observational scaling relations. Furthermore, sources with both ultrafast and molecular outflow detections are found to be located in the ‘forbidden’ region of the NH–λ plane. Overall, an encouraging agreement is obtained over a wide range of AGN and host galaxy parameters. We discuss our results in the context of recent observational findings and numerical simulations. In conclusion, AGN radiative feedback is a promising mechanism for driving galactic outflows that should be considered, alongside wind feedback, in the interpretation of future observational data.

Abstract

The actual mechanism(s) powering galactic outflows in active galactic nuclei (AGNs) is still a matter of debate. At least two physical models have been considered in the literature: wind shocks and radiation pressure on dust. Here, we provide a first quantitative comparison of the AGN radiative feedback scenario with observations of galactic outflows. We directly compare our radiation pressure-driven shell models with the observational data from the most recent compilation of molecular outflows on galactic scales. We show that the observed dynamics and energetics of galactic outflows can be reproduced by AGN radiative feedback, with the inclusion of radiation trapping and/or luminosity evolution. The predicted scalings of the outflow energetics with AGN luminosity can also quantitatively account for the observational scaling relations. Furthermore, sources with both ultrafast and molecular outflow detections are found to be located in the ‘forbidden’ region of the NH–λ plane. Overall, an encouraging agreement is obtained over a wide range of AGN and host galaxy parameters. We discuss our results in the context of recent observational findings and numerical simulations. In conclusion, AGN radiative feedback is a promising mechanism for driving galactic outflows that should be considered, alongside wind feedback, in the interpretation of future observational data.

Statistics

Citations

Dimensions.ai Metrics
10 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

52 downloads since deposited on 26 May 2021
11 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Scopus Subject Areas:Physical Sciences > Astronomy and Astrophysics
Physical Sciences > Space and Planetary Science
Uncontrolled Keywords:Space and Planetary Science, Astronomy and Astrophysics
Language:English
Date:18 February 2021
Deposited On:26 May 2021 14:55
Last Modified:25 Jun 2024 01:40
Publisher:Oxford University Press
ISSN:0035-8711
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/mnras/stab266
  • Content: Published Version
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)