Abstract
Catecholamines, particularly dopamine, have been implicated in various aspects of the reward function including the ability to learn through reinforcement and to modify flexibly responses to changing reinforcement contingencies. We examined the impact of catecholamine depletion (CD) achieved by oral administration of alpha-methyl-paratyrosine (AMPT) on probabilistic reversal learning and passive avoidance (PA) in 15 female subjects with major depressive disorder in full remission (RMDD) and 12 healthy female controls. The CD did not affect significantly the acquisition phase of the reversal learning task. However, CD selectively impaired reversal of the 80-20 contingency pair. In the PA learning task, CD was associated with reduced responding toward rewarding stimuli, although the RMDD and control subjects did not differ regarding these CD-induced changes in reward processing. Interestingly, the performance decrement produced by AMPT on both of these tasks was associated with the level of decreased metabolism in the perigenual anterior cingulate cortex. In an additional examination using the affective Stroop task we found evidence for impaired executive attention as a trait abnormality in MDD. In conclusion, this study showed specific effects of CD on the processing of reward-related stimuli in humans and confirms earlier investigations that show impairments of executive attention as a neuropsychological trait in affective illness.