Header

UZH-Logo

Maintenance Infos

Shifts in growth, but not differentiation, foreshadow the formation of exaggerated forms under chicken domestication


Núñez-León, Daniel; Cordero, Gerardo A; Schlindwein, Xenia; Jensen, Per; Stoeckli, Esther; Sánchez-Villagra, Marcelo R; Werneburg, Ingmar (2021). Shifts in growth, but not differentiation, foreshadow the formation of exaggerated forms under chicken domestication. Proceedings of the Royal Society of London, Series B: Biological Sciences, 288(1953):20210392.

Abstract

Domestication provides an outstanding opportunity for biologists to explore the underpinnings of organismal diversification. In domesticated animals, selective breeding for exaggerated traits is expected to override genetic correlations that normally modulate phenotypic variation in nature. Whether this strong directional selection affects the sequence of tightly synchronized events by which organisms arise (ontogeny) is often overlooked. To address this concern, we compared the ontogeny of the red junglefowl (RJF) (Gallus gallus) to four conspecific lineages that underwent selection for traits of economic or ornamental value to humans. Trait differentiation sequences in embryos of these chicken breeds generally resembled the representative ancestral condition in the RJF, thus revealing that early ontogeny remains highly canalized even during evolution under domestication. This key finding substantiates that the genetic cost of domestication does not necessarily compromise early ontogenetic steps that ensure the production of viable offspring. Instead, disproportionate beak and limb growth (allometry) towards the end of ontogeny better explained phenotypes linked to intense selection for industrial-scale production over the last 100 years. Illuminating the spatial and temporal specificity of development is foundational to the enhancement of chicken breeds, as well as to ongoing research on the origins of phenotypic variation in wild avian species.

Abstract

Domestication provides an outstanding opportunity for biologists to explore the underpinnings of organismal diversification. In domesticated animals, selective breeding for exaggerated traits is expected to override genetic correlations that normally modulate phenotypic variation in nature. Whether this strong directional selection affects the sequence of tightly synchronized events by which organisms arise (ontogeny) is often overlooked. To address this concern, we compared the ontogeny of the red junglefowl (RJF) (Gallus gallus) to four conspecific lineages that underwent selection for traits of economic or ornamental value to humans. Trait differentiation sequences in embryos of these chicken breeds generally resembled the representative ancestral condition in the RJF, thus revealing that early ontogeny remains highly canalized even during evolution under domestication. This key finding substantiates that the genetic cost of domestication does not necessarily compromise early ontogenetic steps that ensure the production of viable offspring. Instead, disproportionate beak and limb growth (allometry) towards the end of ontogeny better explained phenotypes linked to intense selection for industrial-scale production over the last 100 years. Illuminating the spatial and temporal specificity of development is foundational to the enhancement of chicken breeds, as well as to ongoing research on the origins of phenotypic variation in wild avian species.

Statistics

Citations

Dimensions.ai Metrics
5 citations in Web of Science®
6 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

33 downloads since deposited on 22 Jun 2021
18 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Paleontological Institute and Museum
Dewey Decimal Classification:560 Fossils & prehistoric life
Scopus Subject Areas:Life Sciences > General Immunology and Microbiology
Life Sciences > General Biochemistry, Genetics and Molecular Biology
Physical Sciences > General Environmental Science
Life Sciences > General Agricultural and Biological Sciences
Uncontrolled Keywords:General Biochemistry, Genetics and Molecular Biology, General Immunology and Microbiology, General Agricultural and Biological Sciences, General Environmental Science, General Medicine
Language:English
Date:30 June 2021
Deposited On:22 Jun 2021 14:26
Last Modified:27 Jan 2022 07:10
Publisher:Royal Society Publishing
ISSN:0962-8452
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1098/rspb.2021.0392