Header

UZH-Logo

Maintenance Infos

Learning-based defect recognition for quasi-periodic HRSTEM images


Dennler, Nik; Foncubierta-Rodriguez, Antonio; Neupert, Titus; Sousa, Marilyne (2021). Learning-based defect recognition for quasi-periodic HRSTEM images. Micron, 146:103069.

Abstract

Controlling crystalline material defects is crucial, as they affect properties of the material that may be detrimental or beneficial for the final performance of a device. Defect analysis on the sub-nanometer scale is enabled by high-resolution scanning transmission electron microscopy (HRSTEM), where the identification of defects is currently carried out based on human expertise. However, the process is tedious, highly time consuming and, in some cases, yields ambiguous results. Here we propose a semi-supervised machine learning method that assists in the detection of lattice defects from atomic resolution HRSTEM images. It involves a convolutional neural network that classifies image patches as defective or non-defective, a graph-based heuristic that chooses one non-defective patch as a model, and finally an automatically generated convolutional filter bank, which highlights symmetry breaking such as stacking faults, twin defects and grain boundaries. Additionally, we suggest a variance filter to segment amorphous regions and beam defects. The algorithm is tested on III–V/Si crystalline materials and successfully evaluated against different metrics and a baseline approach, showing promising results even for extremely small training data sets and for noise compromised images. By combining the data-driven classification generality, robustness and speed of deep learning with the effectiveness of image filters in segmenting faulty symmetry arrangements, we provide a valuable open-source tool to the microscopist community that can streamline future HRSTEM analyses of crystalline materials.

Abstract

Controlling crystalline material defects is crucial, as they affect properties of the material that may be detrimental or beneficial for the final performance of a device. Defect analysis on the sub-nanometer scale is enabled by high-resolution scanning transmission electron microscopy (HRSTEM), where the identification of defects is currently carried out based on human expertise. However, the process is tedious, highly time consuming and, in some cases, yields ambiguous results. Here we propose a semi-supervised machine learning method that assists in the detection of lattice defects from atomic resolution HRSTEM images. It involves a convolutional neural network that classifies image patches as defective or non-defective, a graph-based heuristic that chooses one non-defective patch as a model, and finally an automatically generated convolutional filter bank, which highlights symmetry breaking such as stacking faults, twin defects and grain boundaries. Additionally, we suggest a variance filter to segment amorphous regions and beam defects. The algorithm is tested on III–V/Si crystalline materials and successfully evaluated against different metrics and a baseline approach, showing promising results even for extremely small training data sets and for noise compromised images. By combining the data-driven classification generality, robustness and speed of deep learning with the effectiveness of image filters in segmenting faulty symmetry arrangements, we provide a valuable open-source tool to the microscopist community that can streamline future HRSTEM analyses of crystalline materials.

Statistics

Citations

Dimensions.ai Metrics
3 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

38 downloads since deposited on 30 Jun 2021
22 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Scopus Subject Areas:Life Sciences > Structural Biology
Physical Sciences > General Materials Science
Physical Sciences > General Physics and Astronomy
Life Sciences > Cell Biology
Uncontrolled Keywords:Cell Biology, Structural Biology
Language:English
Date:1 July 2021
Deposited On:30 Jun 2021 09:24
Last Modified:26 Nov 2023 02:39
Publisher:Elsevier
ISSN:0968-4328
OA Status:Green
Publisher DOI:https://doi.org/10.1016/j.micron.2021.103069