Header

UZH-Logo

Maintenance Infos

Endocannabinoids increase human adipose stem cell differentiation and growth factor secretion in vitro


Ruhl, Tim; Schneider, Pia-Alina; Kim, Bong-Sung; Beier, Justus P (2021). Endocannabinoids increase human adipose stem cell differentiation and growth factor secretion in vitro. Journal of Tissue Engineering and Regenerative Medicine, 15(1):88-98.

Abstract

Adipose stem cells (ASCs) possess the capacity to proliferate, to differentiate into various cells types, and they are able to secrete growth factors. These characteristics are supposed to contribute to their potential for regenerative medicine approaches. In order to advance the therapeutic effects of ASCs, different modulatory procedures have been examined. In this context, the endocannabinoid system (ECS) represents an interesting possibility, since the increased availability of cannabinoids and the underlying molecular pathways of the ECS are of relevance for the development of new regenerative strategies. The effects of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) were investigated on ASC metabolic activity, quantified by PrestoBlue conversion, and cell numbers, evaluated by crystal violet staining. enzyme-linked immunosorbent assay (ELISA) measures were performed to determine cytokine release, and differentiation was assessed by specific labeling techniques. AEA increased the metabolic activity, while 2-AG decreased it in a concentration dependent manner. AEA significantly enhanced OilRed O staining after adipogenic differentiation by over 100%, and both compounds significantly increased cresolphthalein staining after osteogenic differentiation. By contrast, they did not affect sphere diameter or safranin O staining after chondrogenic differentiation. Both substances significantly increased the release of insulin-like growth factor-1 and hepatocyte growth factor, while only AEA enhanced transforming growth factor-β secretion. The results demonstrated that stimulating the ECS exerted significant effects on the biology of ASCs. Exposure to endocannabinoids modulated viability, induced release of regenerative growth factors, and promoted adipogenic and osteogenic differentiation. Our findings could be of specific relevance in ASC based therapies for regenerative medicine.

Abstract

Adipose stem cells (ASCs) possess the capacity to proliferate, to differentiate into various cells types, and they are able to secrete growth factors. These characteristics are supposed to contribute to their potential for regenerative medicine approaches. In order to advance the therapeutic effects of ASCs, different modulatory procedures have been examined. In this context, the endocannabinoid system (ECS) represents an interesting possibility, since the increased availability of cannabinoids and the underlying molecular pathways of the ECS are of relevance for the development of new regenerative strategies. The effects of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) were investigated on ASC metabolic activity, quantified by PrestoBlue conversion, and cell numbers, evaluated by crystal violet staining. enzyme-linked immunosorbent assay (ELISA) measures were performed to determine cytokine release, and differentiation was assessed by specific labeling techniques. AEA increased the metabolic activity, while 2-AG decreased it in a concentration dependent manner. AEA significantly enhanced OilRed O staining after adipogenic differentiation by over 100%, and both compounds significantly increased cresolphthalein staining after osteogenic differentiation. By contrast, they did not affect sphere diameter or safranin O staining after chondrogenic differentiation. Both substances significantly increased the release of insulin-like growth factor-1 and hepatocyte growth factor, while only AEA enhanced transforming growth factor-β secretion. The results demonstrated that stimulating the ECS exerted significant effects on the biology of ASCs. Exposure to endocannabinoids modulated viability, induced release of regenerative growth factors, and promoted adipogenic and osteogenic differentiation. Our findings could be of specific relevance in ASC based therapies for regenerative medicine.

Statistics

Citations

Dimensions.ai Metrics
8 citations in Web of Science®
11 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 29 Jul 2021
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Reconstructive Surgery
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Medicine (miscellaneous)
Physical Sciences > Biomaterials
Physical Sciences > Biomedical Engineering
Language:English
Date:2 January 2021
Deposited On:29 Jul 2021 09:25
Last Modified:25 Jun 2024 01:41
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:1932-6254
OA Status:Closed
Publisher DOI:https://doi.org/10.1002/term.3152
PubMed ID:33459498