Header

UZH-Logo

Maintenance Infos

Evolutionary history of Hemerocallis in Japan inferred from chloroplast and nuclear phylogenies and levels of interspecific gene flow


Hirota, Shun K; Yasumoto, Akiko A; Nitta, Kozue; Tagane, Misa; Miki, Nozomu; Suyama, Yoshihisa; Yahara, Tetsukazu (2021). Evolutionary history of Hemerocallis in Japan inferred from chloroplast and nuclear phylogenies and levels of interspecific gene flow. Molecular Phylogenetics and Evolution, 164:107264.

Abstract

The perennial herb genus Hemerocallis (Asphodelaceae) shows four flowering types: diurnal half-day, diurnal one-day, nocturnal half-day, and nocturnal one-day flowering. These flowering types are corresponding to their main pollinators, and probably act as a primary mechanism of reproductive isolation. To examine how the four flowering types diverged, we reconstructed the phylogeny of the Japanese species of Hemerocallis using 1615 loci of nuclear genome-wide SNPs and 2078 bp sequences of four cpDNA regions. We also examined interspecific gene flows among taxa by an Isolation-with-Migration model and a population structure analysis. Our study revealed an inconsistency between chloroplast and nuclear genome phylogenies, which may have resulted from chloroplast capture. Each of the following five clusters is monophyletic and clearly separated on the nuclear genome-wide phylogenetic tree: (I) two nocturnal flowering species with lemon-yellow flowers, H. citrina (half-day flowering) and H. lilioasphodelus (one-day flowering); (II) a diurnal one-day flowering species with yellow-orange flowers, H. middendorffii; (III) a variety of a diurnal half-day flowering species with reddish orange flowers, H. fulva var. disticha; (IV) another variety of a diurnal half-day flowering species with reddish orange flowers, H. fulva var. aurantiaca, and a diurnal one-day flowering species with yellow-orange flowers, H. major; (V) a diurnal half-day flowering species with yellow-orange flowers, H. hakuunensis. The five clusters are consistent with traditional phenotype-based taxonomy (cluster I, cluster II, and clusters III-V correspond to Hemerocallis sect. Hemerocallis, Capitatae, and Fulvae, respectively). These findings could indicate that three flowering types (nocturnal flowering, diurnal one-day flowering, and diurnal half-day flowering) diverged in early evolutionary stages of Hemerocallis and subsequently a change from diurnal half-day flowering to diurnal one-day flowering occurred in a lineage of H. major. While genetic differentiation among the five clusters was well maintained, significant gene flow was detected between most pairs of taxa, suggesting that repeated hybridization played a role in the evolution of those taxa.

Abstract

The perennial herb genus Hemerocallis (Asphodelaceae) shows four flowering types: diurnal half-day, diurnal one-day, nocturnal half-day, and nocturnal one-day flowering. These flowering types are corresponding to their main pollinators, and probably act as a primary mechanism of reproductive isolation. To examine how the four flowering types diverged, we reconstructed the phylogeny of the Japanese species of Hemerocallis using 1615 loci of nuclear genome-wide SNPs and 2078 bp sequences of four cpDNA regions. We also examined interspecific gene flows among taxa by an Isolation-with-Migration model and a population structure analysis. Our study revealed an inconsistency between chloroplast and nuclear genome phylogenies, which may have resulted from chloroplast capture. Each of the following five clusters is monophyletic and clearly separated on the nuclear genome-wide phylogenetic tree: (I) two nocturnal flowering species with lemon-yellow flowers, H. citrina (half-day flowering) and H. lilioasphodelus (one-day flowering); (II) a diurnal one-day flowering species with yellow-orange flowers, H. middendorffii; (III) a variety of a diurnal half-day flowering species with reddish orange flowers, H. fulva var. disticha; (IV) another variety of a diurnal half-day flowering species with reddish orange flowers, H. fulva var. aurantiaca, and a diurnal one-day flowering species with yellow-orange flowers, H. major; (V) a diurnal half-day flowering species with yellow-orange flowers, H. hakuunensis. The five clusters are consistent with traditional phenotype-based taxonomy (cluster I, cluster II, and clusters III-V correspond to Hemerocallis sect. Hemerocallis, Capitatae, and Fulvae, respectively). These findings could indicate that three flowering types (nocturnal flowering, diurnal one-day flowering, and diurnal half-day flowering) diverged in early evolutionary stages of Hemerocallis and subsequently a change from diurnal half-day flowering to diurnal one-day flowering occurred in a lineage of H. major. While genetic differentiation among the five clusters was well maintained, significant gene flow was detected between most pairs of taxa, suggesting that repeated hybridization played a role in the evolution of those taxa.

Statistics

Citations

Dimensions.ai Metrics
12 citations in Web of Science®
11 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

68 downloads since deposited on 03 Aug 2021
15 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Scopus Subject Areas:Life Sciences > Ecology, Evolution, Behavior and Systematics
Life Sciences > Molecular Biology
Life Sciences > Genetics
Uncontrolled Keywords:Genetics, Ecology, Evolution, Behavior and Systematics, Molecular Biology
Language:English
Date:1 November 2021
Deposited On:03 Aug 2021 09:58
Last Modified:27 Jan 2024 02:38
Publisher:Elsevier
ISSN:1055-7903
OA Status:Hybrid
Publisher DOI:https://doi.org/10.1016/j.ympev.2021.107264
  • Content: Published Version
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)