Header

UZH-Logo

Maintenance Infos

Future glacial lake outburst flood (GLOF) hazard of the South Lhonak Lake, Sikkim Himalaya


Sattar, Ashim; Goswami, Ajanta; Kulkarni, Anil V; Emmer, Adam; Haritashya, Umesh K; Allen, Simon; Frey, Holger; Huggel, Christian (2021). Future glacial lake outburst flood (GLOF) hazard of the South Lhonak Lake, Sikkim Himalaya. Geomorphology, 388:107783.

Abstract

The Teesta basin in Sikkim Himalaya hosts numerous glacial lakes in the high altitude glacierized region, including one of the largest and the fastest-growing South Lhonak Lake. While these lakes are mainly located in remote and unsettled mountain valleys, far-reaching glacial lake outburst floods (GLOFs) may claim lives and damage assets up to tens of kilometers downstream. Therefore, evaluating GLOF hazard associated with current and potential future glacier-retreat-driven changes is of high importance. In this work, we assess the future GLOF hazard of the South Lhonak Lake by integrating glacier and hydrodynamic modeling to calculate the lake's future volume and hydraulic GLOF characteristics and impacts along the valley. We identify the increased susceptibility of the lake to potential avalanche impacts as the lake grows in the future. Here we model six avalanche scenarios of varying magnitudes to evaluate the impact-wave generated in the lake and overtopping flow at the dam. Avalanche simulations indicate that the frontal moraine is susceptible to overtopping. The overtopping flow hydraulics is evaluated along the channel assuming no erosion of the moraine. Further, we consider three lake-breach scenarios to model GLOFs originating from the lake, flow propagation, and its downstream impacts. The uncertainty in the breach parameters including breach width and time of failure are calculated to estimate the upper and the lower hydraulic limits of potential future GLOF events. Further, the uncertainty in the flow hydraulics was evaluated using dynamic flood routing of six GLOFs that originate from the lake. Hydrodynamic GLOF modeling resulted in a predicted peak discharge of 4311 m3s−1, 8000 m3s−1, and 12,487 m3s−1 for breach depths of 20 m, 30 m, and 40 m respectively. The large-potential scenario suggests that maximum flow depth and flow velocity at Chungthang, a town proximally located to a major hydropower station built-in 2015, could reach up to 25–30 m and 6–9 m s−1, respectively. Mapping infrastructure exposed to GLOFs in the Teesta valley shows that many settlements and assets located along the river channel at Chungthang are potentially exposed to future GLOFs, indicating the need to conduct a full environmental impact assessment and potentially undertake GLOF risk mitigation measures.

Abstract

The Teesta basin in Sikkim Himalaya hosts numerous glacial lakes in the high altitude glacierized region, including one of the largest and the fastest-growing South Lhonak Lake. While these lakes are mainly located in remote and unsettled mountain valleys, far-reaching glacial lake outburst floods (GLOFs) may claim lives and damage assets up to tens of kilometers downstream. Therefore, evaluating GLOF hazard associated with current and potential future glacier-retreat-driven changes is of high importance. In this work, we assess the future GLOF hazard of the South Lhonak Lake by integrating glacier and hydrodynamic modeling to calculate the lake's future volume and hydraulic GLOF characteristics and impacts along the valley. We identify the increased susceptibility of the lake to potential avalanche impacts as the lake grows in the future. Here we model six avalanche scenarios of varying magnitudes to evaluate the impact-wave generated in the lake and overtopping flow at the dam. Avalanche simulations indicate that the frontal moraine is susceptible to overtopping. The overtopping flow hydraulics is evaluated along the channel assuming no erosion of the moraine. Further, we consider three lake-breach scenarios to model GLOFs originating from the lake, flow propagation, and its downstream impacts. The uncertainty in the breach parameters including breach width and time of failure are calculated to estimate the upper and the lower hydraulic limits of potential future GLOF events. Further, the uncertainty in the flow hydraulics was evaluated using dynamic flood routing of six GLOFs that originate from the lake. Hydrodynamic GLOF modeling resulted in a predicted peak discharge of 4311 m3s−1, 8000 m3s−1, and 12,487 m3s−1 for breach depths of 20 m, 30 m, and 40 m respectively. The large-potential scenario suggests that maximum flow depth and flow velocity at Chungthang, a town proximally located to a major hydropower station built-in 2015, could reach up to 25–30 m and 6–9 m s−1, respectively. Mapping infrastructure exposed to GLOFs in the Teesta valley shows that many settlements and assets located along the river channel at Chungthang are potentially exposed to future GLOFs, indicating the need to conduct a full environmental impact assessment and potentially undertake GLOF risk mitigation measures.

Statistics

Citations

Altmetrics

Downloads

8 downloads since deposited on 27 Aug 2021
8 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Scopus Subject Areas:Physical Sciences > Earth-Surface Processes
Uncontrolled Keywords:Earth-Surface Processes
Language:English
Date:1 September 2021
Deposited On:27 Aug 2021 14:05
Last Modified:28 Aug 2021 20:01
Publisher:Elsevier
ISSN:0169-555X
OA Status:Hybrid
Publisher DOI:https://doi.org/10.1016/j.geomorph.2021.107783
Project Information:
  • : FunderNASA
  • : Grant ID
  • : Project Title
  • : FunderSwiss Agency for Development and Cooperation
  • : Grant ID
  • : Project Title
  • : FunderIndia Ministry of Earth Sciences
  • : Grant ID
  • : Project Title

Download

Hybrid Open Access

Download PDF  'Future glacial lake outburst flood (GLOF) hazard of the South Lhonak Lake, Sikkim Himalaya'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 9MB
View at publisher
Licence: Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)