Header

UZH-Logo

Maintenance Infos

A Glra3 phosphodeficient mouse mutant establishes the critical role of protein kinase A-dependent phosphorylation and inhibition of glycine receptors in spinal inflammatory hyperalgesia


Werynska, Karolina; Gingras, Jacinthe; Benke, Dietmar; Scheurer, Louis; Neumann, Elena; Zeilhofer, Hanns Ulrich (2021). A Glra3 phosphodeficient mouse mutant establishes the critical role of protein kinase A-dependent phosphorylation and inhibition of glycine receptors in spinal inflammatory hyperalgesia. Pain, 162(9):2436-2445.

Abstract

Glycinergic neurons and glycine receptors (GlyRs) exert a critical control over spinal nociception. Prostaglandin E2 (PGE2), a key inflammatory mediator produced in the spinal cord in response to peripheral inflammation, inhibits a certain subtype of GlyRs (α3GlyR) that is defined by the inclusion of α3 subunits and distinctly expressed in the lamina II of the spinal dorsal horn, ie, at the site where most nociceptive nerve fibers terminate. Previous work has shown that the hyperalgesic effect of spinal PGE2 is lost in mice lacking α3GlyRs and suggested that this phenotype results from the prevention of PGE2-evoked protein kinase A (PKA)-dependent phosphorylation and inhibition of α3GlyRs. However, direct proof for a contribution of this phosphorylation event to inflammatory hyperalgesia was still lacking. To address this knowledge gap, a phospho-deficient mouse line was generated that carries a serine to alanine point mutation at a strong consensus site for PKA-dependent phosphorylation in the long intracellular loop of the GlyR α3 subunit. These mice showed unaltered spinal expression of GlyR α3 subunits. In behavioral experiments, they showed no alterations in baseline nociception, but were protected from the hyperalgesic effects of intrathecally injected PGE2 and exhibited markedly reduced inflammatory hyperalgesia. These behavioral phenotypes closely recapitulate those found previously in GlyR α3-deficient mice. Our results thus firmly establish the crucial role of PKA-dependent phosphorylation of α3GlyRs in inflammatory hyperalgesia.

Abstract

Glycinergic neurons and glycine receptors (GlyRs) exert a critical control over spinal nociception. Prostaglandin E2 (PGE2), a key inflammatory mediator produced in the spinal cord in response to peripheral inflammation, inhibits a certain subtype of GlyRs (α3GlyR) that is defined by the inclusion of α3 subunits and distinctly expressed in the lamina II of the spinal dorsal horn, ie, at the site where most nociceptive nerve fibers terminate. Previous work has shown that the hyperalgesic effect of spinal PGE2 is lost in mice lacking α3GlyRs and suggested that this phenotype results from the prevention of PGE2-evoked protein kinase A (PKA)-dependent phosphorylation and inhibition of α3GlyRs. However, direct proof for a contribution of this phosphorylation event to inflammatory hyperalgesia was still lacking. To address this knowledge gap, a phospho-deficient mouse line was generated that carries a serine to alanine point mutation at a strong consensus site for PKA-dependent phosphorylation in the long intracellular loop of the GlyR α3 subunit. These mice showed unaltered spinal expression of GlyR α3 subunits. In behavioral experiments, they showed no alterations in baseline nociception, but were protected from the hyperalgesic effects of intrathecally injected PGE2 and exhibited markedly reduced inflammatory hyperalgesia. These behavioral phenotypes closely recapitulate those found previously in GlyR α3-deficient mice. Our results thus firmly establish the crucial role of PKA-dependent phosphorylation of α3GlyRs in inflammatory hyperalgesia.

Statistics

Citations

Dimensions.ai Metrics
9 citations in Web of Science®
7 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

27 downloads since deposited on 01 Sep 2021
9 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:1 September 2021
Deposited On:01 Sep 2021 14:37
Last Modified:26 Nov 2023 02:40
Publisher:Lippincott Williams & Wilkins
ISSN:0304-3959
OA Status:Hybrid
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1097/j.pain.0000000000002236
PubMed ID:34264571
  • Content: Published Version
  • Licence: Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)