Header

UZH-Logo

Maintenance Infos

Performance of Lychnis flos-cuculi from fragmented populations under experimental biotic interactions


Galeuchet, D J; Perret, C; Fischer, M (2005). Performance of Lychnis flos-cuculi from fragmented populations under experimental biotic interactions. Ecology, 86(4):1002-1011.

Abstract

To study genetic effects of habitat fragmentation on plant performance and plant response to biotic interactions, we performed a greenhouse study with plants from 27 populations of the common plant Lychnis flos-cuculi differing in size, isolation, and microsatellite heterozygosity. We germinated seeds of 449 plants and grew up to nine offspring per maternal plant in single pots assigned to a factorial competition-by-pathogen infection treatment. We applied competition by sowing seeds of the grass Anthoxanthum odoratum into half of the pots. Moreover, half of the plants were inoculated with infective sporidia of the anther smut Microbotryum violaceum. Significant variation among populations in most size measures indicated genetic differentiation between populations. Plants from smaller populations developed fewer flowers than plants from larger populations indicating a genetic Allee effect. A decrease in flower number was also observed for populations with decreased microsatellite heterozygosity, suggesting higher inbreeding depression. Competition and pathogen infection reduced plant size independently from one another and independent from the fragmentation of the habitats of plant origin. While pathogen infection increased the total number of flowers per plant, it decreased the number of uninfected flowers per plant. This study demonstrates that even common species are negatively affected by habitat fragmentation. At the same time, it suggests little effect of habitat fragmentation on plant response to experimental competition and pathogen infection.

Abstract

To study genetic effects of habitat fragmentation on plant performance and plant response to biotic interactions, we performed a greenhouse study with plants from 27 populations of the common plant Lychnis flos-cuculi differing in size, isolation, and microsatellite heterozygosity. We germinated seeds of 449 plants and grew up to nine offspring per maternal plant in single pots assigned to a factorial competition-by-pathogen infection treatment. We applied competition by sowing seeds of the grass Anthoxanthum odoratum into half of the pots. Moreover, half of the plants were inoculated with infective sporidia of the anther smut Microbotryum violaceum. Significant variation among populations in most size measures indicated genetic differentiation between populations. Plants from smaller populations developed fewer flowers than plants from larger populations indicating a genetic Allee effect. A decrease in flower number was also observed for populations with decreased microsatellite heterozygosity, suggesting higher inbreeding depression. Competition and pathogen infection reduced plant size independently from one another and independent from the fragmentation of the habitats of plant origin. While pathogen infection increased the total number of flowers per plant, it decreased the number of uninfected flowers per plant. This study demonstrates that even common species are negatively affected by habitat fragmentation. At the same time, it suggests little effect of habitat fragmentation on plant response to experimental competition and pathogen infection.

Statistics

Citations

Dimensions.ai Metrics
29 citations in Web of Science®
29 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

228 downloads since deposited on 11 Feb 2008
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Scopus Subject Areas:Life Sciences > Ecology, Evolution, Behavior and Systematics
Uncontrolled Keywords:Allee effect, biotic interactions, competition, Lychnis flos-cuculi, Silene flos-cuculi, population size, Microbotryum violaceum, fitness
Language:English
Date:April 2005
Deposited On:11 Feb 2008 12:27
Last Modified:26 Jun 2022 08:44
Publisher:Ecological Society of America
ISSN:0012-9658
Additional Information:Copyright by the Ecological Society of America
OA Status:Green
Publisher DOI:https://doi.org/10.1890/03-0762