Header

UZH-Logo

Maintenance Infos

How ab initio Molecular Dynamics Can Change the Understanding on Transition Metal Catalysed Water Oxidation


Schilling, Mauro; Ketkaew, Rangsiman; Luber, Sandra (2021). How ab initio Molecular Dynamics Can Change the Understanding on Transition Metal Catalysed Water Oxidation. CHIMIA International Journal for Chemistry, 75(3):195-201.

Abstract

Artificial water splitting is a promising technology that allows the storage of renewable energy in the form of energy-rich compounds. This mini-review showcases how theoretical studies contribute to the under-standing of existing water oxidation catalysts (WOCs) as well as inspiring the development of novel WOCs. In order to understand the chemical complexity of transition metal complexes and their interaction with the solvent environment, the use of sophisticated simulation protocols is necessary. As an illustration, a family of ruthe- nium-based WOCs is presented which were investigated employing a wide range of forefront computational methods with emphasis on ab initiomolecular dynamic based approaches. In those studies a base assisted oxygen–oxygen bond formation was identified as the energetically most favourable reaction mechanism. By examining the role of local environmental effects at ambient temperature and the effect of modifications in the ligand framework, a comprehensible picture of the WOCs can be given, where the latter can serve as a guideline for further experimental and computational studies. In this mini-review, we provide a description of the methods, and the findings of our previous computational studies in compacted form, aimed at scientists with a theoretical as well as experimental background.

Abstract

Artificial water splitting is a promising technology that allows the storage of renewable energy in the form of energy-rich compounds. This mini-review showcases how theoretical studies contribute to the under-standing of existing water oxidation catalysts (WOCs) as well as inspiring the development of novel WOCs. In order to understand the chemical complexity of transition metal complexes and their interaction with the solvent environment, the use of sophisticated simulation protocols is necessary. As an illustration, a family of ruthe- nium-based WOCs is presented which were investigated employing a wide range of forefront computational methods with emphasis on ab initiomolecular dynamic based approaches. In those studies a base assisted oxygen–oxygen bond formation was identified as the energetically most favourable reaction mechanism. By examining the role of local environmental effects at ambient temperature and the effect of modifications in the ligand framework, a comprehensible picture of the WOCs can be given, where the latter can serve as a guideline for further experimental and computational studies. In this mini-review, we provide a description of the methods, and the findings of our previous computational studies in compacted form, aimed at scientists with a theoretical as well as experimental background.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

23 downloads since deposited on 11 Oct 2021
12 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
08 Research Priority Programs > Solar Light to Chemical Energy Conversion
Dewey Decimal Classification:540 Chemistry
Scopus Subject Areas:Physical Sciences > General Chemistry
Uncontrolled Keywords:General Medicine, General Chemistry
Language:English
Date:31 March 2021
Deposited On:11 Oct 2021 13:43
Last Modified:26 Jun 2022 07:02
Publisher:Swiss Chemical Society
ISSN:0009-4293
Additional Information:Copyright ©Swiss Chemical Society: CHIMIA, 75(3):195-201, 2021
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.2533/chimia.2021.195
PubMed ID:33766202
Project Information:
  • : FunderSNSF
  • : Grant IDPP00P2_170667
  • : Project TitleIn Silico Investigation and Design of Bio-inspired Catalysts for Water Splitting
  • Content: Published Version
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)