Navigation auf zora.uzh.ch

Search ZORA

ZORA (Zurich Open Repository and Archive)

Erosion of CAD/CAM restorative materials and human enamel: An in vitro study

Yang, Hui; Lu, Zhi-Cen; Attin, Thomas; Yu, Hao (2021). Erosion of CAD/CAM restorative materials and human enamel: An in vitro study. Journal of the Mechanical Behavior of Biomedical Materials, 119:104503.

Abstract

This in vitro study used the same frequency and duration of acid contact as a previous in situ/in vivo study to evaluate the effect of erosion on CAD/CAM restorative materials and human enamel and to compare the effects of in vitro and in situ/in vivo acid challenges on CAD/CAM restorative materials and human enamel. The CAD/CAM restorative materials (IPS e.max CAD, Lava Ultimate, and PMMA block) and human enamel were eroded by immersion in 150 ml of cola drink for 14 days (4 5 min/day). The surface microhardness and surface roughness of the specimens were measured at baseline (T1), day 7 (T2), and day 14 (T3). The substance losses were measured at T2 and T3. The data were statistically analyzed using repeated measures ANOVA and Bonferroni's test (α = 0.05). Erosion significantly decreased the surface microhardness of the CAD/CAM restorative materials and human enamel (all P < 0.001). The overall percentage of surface microhardness loss (%SMHl) of the PMMA block and enamel due to in vitro erosion was significantly higher than that due to in situ/in vivo erosion (P = 0.02 and P < 0.001, respectively). Consistent with in situ/in vivo erosion, the surface roughness and profile of the tested restorative materials remained unchanged after in vitro erosion. A significant increase in the surface roughness and substance loss was observed for enamel after in vitro erosion (all P < 0.001). The overall substance loss of enamel due to in vitro erosion was significantly higher than that due to in situ/in vivo erosion (P < 0.001). In conclusion, erosion decreased the surface microhardness of the CAD/CAM restorative materials and human enamel. Moreover, erosion negatively influenced the substance loss and surface roughness of human enamel. For the substance loss of enamel and %SMHl of PMMA block and enamel, the in vitro erosive effects were approximately 1–2 times greater than the in situ/in vivo effects. However, for the surface roughness and profile of the CAD/CAM restorative materials, no significant difference was found between in vitro and in situ/in vivo erosion.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Clinic of Conservative and Preventive Dentistry
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Physical Sciences > Biomaterials
Physical Sciences > Biomedical Engineering
Physical Sciences > Mechanics of Materials
Language:English
Date:July 2021
Deposited On:13 Oct 2021 14:11
Last Modified:14 Mar 2025 04:37
Publisher:Elsevier
ISSN:1751-6161
OA Status:Green
Publisher DOI:https://doi.org/10.1016/j.jmbbm.2021.104503
PubMed ID:33845297
Download PDF  'Erosion of CAD/CAM restorative materials and human enamel: An in vitro study'.
Preview
  • Content: Accepted Version
  • Language: English
  • Licence: Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
3 citations in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

41 downloads since deposited on 13 Oct 2021
23 downloads since 12 months
Detailed statistics

Authors, Affiliations, Collaborations

Similar Publications