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Abstract We show that the zeroth cohomology of M. Kontsevich’s graph
complex is isomorphic to the Grothendieck–Teichmüller Lie algebra grt1.
The map is explicitly described. This result has applications to deformation
quantization and Duflo theory. We also compute the homotopy derivations of
the Gerstenhaber operad. They are parameterized by grt1, up to one class (or
two, depending on the definitions). More generally, the homotopy derivations
of the (non-unital) En operads may be expressed through the cohomology of
a suitable graph complex. Our methods also give a second proof of a result of
H. Furusho, stating that the pentagon equation for grt1-elements implies the
hexagon equation.

1 Introduction

The Grothendieck–Teichmüller group GRT1 is a pro-unipotent group intro-
duced by Drinfeld [16], based on ideas of Grothendieck. This group is of great
interest because it plays a central role in a variety of constructions in math-
ematics. The Grothendieck–Teichmüller group acts freely transitively on the
set of Drinfeld associators. These associators are the central algebraic objects
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672 T. Willwacher

in Drinfeld’s construction of quasi-Hopf algebras [16] and the quantization of
Lie bialgeras [17,40], in deformation quantization [38], in showing formality
of the little disks operad [41], in the study of multiple zeta values [8,20,31] or
may be used to solve the Kashiwara–Vergne conjecture in Lie theory [1,36].
The original (profinite) version of this group was proposed by Grothendieck
to study the Galois group Gal(Q̄/Q). For a more detailed survey we refer the
reader to [21,35].

In this paper we will add two “stories” to the above list. The first is related
to M. Kontsevich’s graph complex GC2, which is a combinatorially defined
complex (roughly linear combinations of isomorphism classes of graphs) intro-
duced in the study of the formality conjecture [25]. This complex in fact carries
the structure of a differential graded Lie algebra, which acts on M. Kontse-
vich’s formality morphisms. Little is known about its cohomology H(GC2).
The first main result of this paper is the following.

Theorem 1.1 The zeroth cohomology of the Kontsevich graph complex, con-

sidered as Lie algebra, is isomorphic to the Grothendieck–Teichmüller Lie

algebra.

H0(GC2) ∼= grt1.

Furthermore the cohomology in negative degrees vanishes.

H<0(GC2) = 0.

The cohomology in positive degrees is still unknown. In particular, it is an
open conjecture that H1(GC2) = 0. On the other hand computer experiments
[7] show that H3(GC2) �= 0.

The second main result is about the homotopy theory of the Gerstenhaber
operad e2, which is quasi-isomorphic to the operad of chains of the little disks
operad. Tamarkin has shown [39] that grt1 acts faithfully on some (and hence
any) cofibrant resolution of e2 by operadic derivations. I. e., there is an injective
map of Lie algebras

grt1 →֒ H0(Der(hoe2))

where hoe2 is the minimal quasi-free resolution of e2 and Der(. . . ) denotes
the differential graded Lie algebra of derivations. Precise definitions will be
given below. The second main result of this paper is the computation of
H0(Der(hoe2)). In particular we will show that the above inclusion is an
isomorphism, up to one “trivial” class acting by scaling of the generators.
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M. Kontsevich’s graph complex 673

Theorem 1.2 The automorphism of the Gerstenhaber operad up to homotopy

are given by grt1 and one class, i.e., there is an isomorphisms of Lie algebras

H0(Der(hoe2)) ∼= grt1 ⋊ K =: grt

where K acts on grt1 as multiplication with the degree with respect to the

grading on grt1.

Let en be the operad governing n-algebras and let hoen be its minimal
cofibrant resolution. The third main contribution of this paper is to show that
the cohomology of Der(hoen) can be expressed through the cohomology of a
suitable graph complex GCn , which was also introduced (in some form) by
M. Kontsevich [23].

Theorem 1.3 Let en be the operad governing n-algebras, n = 2, 3, . . . . Then

H(Der(hoen)) ∼= S+(H(GCn)[−n−1]⊕K[−n−1]⊕Vn[−n−1])[n+1] (1)

as graded vector spaces where

Vn =
⊕

j≥1
j≡2n+1 mod 4

K[n − j]

and S+(· · · ) denotes the completed symmetric tensor product, without

the zeroth term (i.e., without K). Furthermore the inclusion H(GCn) →
H(Der(hoen)) is a map of Lie algebras.

Remark 1.4 One may put a natural graded Lie algebra structure on H(GCn)⊕
K⊕Vn as follows. H(GCn)⊕Vn is the cohomology of a larger graph complex
fGCn,conn (to be defined below), which is naturally a differential graded Lie
algebra. The extra generator acts by multiplication by the Euler characteristic
minus one. Then Theorem 1.3 may be strengthened by saying that the inclusion
of H(GCn)⊕K⊕Vn is a map of graded Lie algebras. Note however that we do
not make claims about the Lie algebra structure on the whole of H(Der(hoen)).

Remark 1.5 It is a well known fact due to Tamarkin that an element of
H0(Der(hoe2)) determines a L∞ derivation of the Lie algebra of polyvector
fields Tpoly[1] up to homotopy. The map from H0(Der(hoe2)) to H0(GC2)

encoded in Theorem 1.3 is a “stable” version of this map.

Remark 1.6 A result similar to Theorem 1.2 has recently been obtained by
Fresse [18]. The differences between his result and ours are: (i) Fresse con-
siders e2 as a Hopf operad and studies automorphisms of a resolution as Hopf
operad and (ii) he computes the full automorphism group (up to homotopy),
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674 T. Willwacher

not just the Lie algebra. The second difference is minor, since a pro-unipotent
group is isomorphic to its Lie algebra. See Appendix L for a more detailed dis-
cussion. The first difference is more severe and makes the results of [18] and the
present paper distinct. There is one “link”: We construct the grt action below
by acting on some Hopf operad quasi-isomorphic to en (as Hopf operad). It
will be apparent that the action respects the Hopf operad structure, see Remark
I.8.

Remark 1.7 The author was made aware by V. Turchin recently that the defor-
mation complexes of operad maps em → en , but with the bracket being sent to
zero, have also been considered and related to a version of graph cohomology
in [4,5,29,42].

1.1 Structure of the paper

We tried to keep the main body of this paper short, at the cost of a larger number
of Appendices which contain some technical results. In Sect. 2 we fix our nota-
tion and recall some standard definitions. Section 3 contains the definition of
the graph complexes we work with. Section 5 contains a proof of Theorem 1.3.
In Sect. 6 the definition of the Grothendieck–Teichmüller Lie algebra grt1 is
recalled and some of its properties are derived. The proof of the main Theorems
1.1 and 1.2 follows in Sect. 8. Section 10 contains some applications of this
Theorem. Section 9 contains a largely independent “pedestrian” description
of the map between GC2 and grt1. The important result is a computation of
the leading order terms of the graph cohomology classes corresponding to the
conjectural generators σ3, σ5, . . . of grt1. Finally the numerous appendices
provide background for some constructions and notations used in the main
text. Of particular importance is Appendix I, in which a technical construction
we call “operadic twisting” is introduced.

2 Notation and conventions

We work over a ground field K of characteristic zero. For V a graded or
differential graded (dg) K-vector space, we denote its r -fold desuspension by
V [r ]. The operator on elements shifting degrees by one we denote by s, so
that for x ∈ V , s x ∈ V [1]. For x ∈ V a homogeneous element, we denote
by |x | its degree, so that for example | s x | = |x | − 1. In general we will
use cohomological conventions, i.e., differentials will have degree +1. For a
complex V with differential d = d1 + d2 such that d2

1 = 0, we denote by
(V, d1) the graded vector space V endowed with the differential d1.

A (Z-)grading on a vector space V is a decompostion V ∼= ⊕n∈ZVn into a
direct sum of subspaces Vn . We similarly call a decomposition
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M. Kontsevich’s graph complex 675

V ∼=
∏

n∈Z

Vn

into a direct product of subspaces a complete grading or just grading (abusing
notation) of the vector space V .

The symmetric groups will be denoted by Sn , n = 1, 2, . . . . We denote the
(completed) symmetric product space of the (dg) vector space V by

S+(V ) :=
∏

j≥1

(V⊗ j )S j (2)

where the symmetric groups act by permutations of the factors. Sometimes we
will also use the version with a j = 0-term

S(V ) := K⊕ S+(V ).

Our conventions about operads will mostly follow the textbook [32] by
Loday and Vallette. For P an operad, we denote its space of N -ary operations
by P(N ). The operadic r -fold desuspension is an operad P{r} such that

P{r}(N ) = P(N )⊗ sgn⊗r
N [(N − 1)r ]

where sgnN is the sign representation of SN . Identical notation is used for
cooperads. All cooperads we will encounter arise as Koszul duals (see [32,
7.2]) of standard quadratic operads. In particular the Koszul dual cooperad of
the commutative operad Com is the Lie cooperad (up to suspension)

Com∨ = Lie∗{1}

and similarly (see [32, chapter 13])

Lie∨ = Com∗{1}
Ass∨ = Ass∗{1}.

A central role will be played by the operads en governing n-algebras for
n = 2, 3, . . . , see [32, 13.3.22]. Their Koszul duals are

e∨n = e∗n{n}.

If C is a coaugmented cooperad, we will denote the quasi-free operad
obtained by cobar construction (see [32, 7.3.3]) by �(C). If P is a Koszul
operad, then there is a canonical quasi-isomorphism

�(P∨) → P
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676 T. Willwacher

and �(P∨) is the minimal resolution of P . The operads mentioned above and
their desuspensions are Koszul and we use the following abbreviations:

hoen = �(e∨n ) hoLien = �((Lie{n − 1})∨) = �(Com∗{n}).

The subscript on the right is chosen so that we have an embedding hoLien →
hoen . Using a formality morphism of the little n-cubes operad (see [41] for
n = 2 or [26], [30]), hoen can be seen as a model for the En operad, without
zero-ary operations.

For C a cooperad and P an operad, we denote the convolution dg Lie algebra
by

HomS(C, P) =
∏

N≥0

HomSN
(C(N ), P(N )) (3)

as in [32, section 6.4.4]. In the cases relevant to this work C will always be
coaugmented, with C(1) one dimensional, C(0) = 0 and we are given a map
of operads �(C) → P . Such a map determines a Maurer–Cartan element α

in the differential graded (dg) Lie algebra HomS(C, P). We may twist by this
Maurer-Cartan element to obtain a Lie algebra which we denote

Def(�(C) → P)

and call the deformation complex of the map �(C) → P . The corresponding
notation in [32, section 6.4.9] is Homα

S
(C, P).

Remark 2.1 Our notation here is slightly non-standard. In some respect (and
in some not) it is more natural to call

∏

N≥2

HomSN
(C(N ), P(N ))

the deformation complex. However, our convention will significantly stream-
line later proofs since we will not have to treat the N = 1 case as special. In
the relevant examples, P(1) is one dimensional and the cohomology of both
candidate deformation complexes differs by a one dimensional space.

We will often use the following Lemma, which is a form of the left lifting
(up to homotopy) property of �(C).

Lemma 2.2 [see [33, Theorem 7] or [45, Proposition 4.8]] Let C be a coaug-

mented cooperad, let P and P ′ be operads, and let

�(C) → P → P ′
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M. Kontsevich’s graph complex 677

be operad maps, with the right hand arrow being a quasi-isomorphism. Then

the induced map of differential graded Lie algebras

Def(�(C) → P) → Def(�(C) → P ′)

is a quasi-isomorphism.

Proof We have to show that the mapping cone is acyclic. Put a descending
complete filtration on the mapping cone as follows:

F p :=
∏

N≥p

HomSN
(C(N ), P(N ))[1] ⊕ HomSN

(C(N ), P ′(N )).

The associated graded is acyclic since P → P ′ is a quasi-isomorphism. Hence
it follows by standard spectral sequence arguments that the mapping cone is
acyclic as well. ⊓⊔

We recall the following definitions from [39, section 5.1]: Let P be a (dif-
ferential graded) operad and let P ′ be the same operad with zero differential.
Define the dg commutative algebra an = K[ǫ]/(ǫ2) with |ǫ| = −n. A map of
S-modules g : P ′ → P ′ of degree n is called a derivation of degree n if the
map

id + ǫg : P ′ → P ′ ⊗ an

is a map of operads. The derivations of degree−n form a vector space and the
space of derivations

Der(P)′

is defined to be the direct sum of these spaces for all n. Der(P)′ is endowed with
a differential derived from the differential on P . Note that the “true” derivations
of P are the closed degree 0 elements of Der(P)′, so the notation is slightly
abusive. Furthermore there is a Lie bracket on Der(P)′ by the commutator:

[
D, D′] := D ◦ D′ − (−1)nn′ D′ ◦ D

where D and D′ are derivations of degrees n and n′. It may be checked that[
D, D′] is indeed derivation of degree n + n′. In the homotopy theory of

operads, one is interested in studying Der(P̃)′ and in particular its cohomolgy
for some cofibrant replacement P̃ of P . Up to homotopy it does not matter
which cofibrant replacement is used.
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678 T. Willwacher

The important examples for us are the operads P = hoen . One may work
out the definitions to see that the complex Der(hoen)

′ is isomorphic to the
codimension one subcomplex

∏

N≥2

HomSN
(e∨n (N ), P(N ))[1] ⊂ Def

(
hoen

id−→ hoen

)
[1].

Note however that the Lie brackets are different and mind the degree shift. In
order to streamline later proofs we will define the complex

Der(hoen) :=
∏

N≥1

HomSN
(e∨n (N ), P(N ))[1] ∼= Def

(
hoen

id→ hoen

)
[1]

and also call it the complex of derivations of hoen . The Lie bracket naturally
extends to this larger complex.

Remark 2.3 Note that scaling by arity, i. e. the map

A : P → P

P(N ) ∋ x �→ (N − 1)x

is a derivation for any operad P , which commutes with all other derivations.
Our definition of Der(· · · ) is such that this trivial derivation is rendered exact.
For example:

Der(hoen) = Der(hoen)
′ ⊕KB

where the coboundary of B is A.1

For C a coaugmented cooperad, P an operad and f : �(C) → P an operad
map, there are canonical maps

Der(�(C)) → Def(�(C)
f→ P)[1] ← Der(P)′

by post- or pre-composition. For homogeneous D ∈ Der(�(C)), D′ ∈
Der(P)′ we will use the following notation for these maps

D �→ (−1)|D| s f ◦ D

D′ �→ (−1)|D
′| s D′ ◦ f. (4)

1 Concretely, B is zero in all arities except in arity 1 and sends a basis element of e∨n (1) ∼= K

to the unit in hoen(1) ∼= K.
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M. Kontsevich’s graph complex 679

Remark 2.4 In the following, we will often encounter deformation complexes
of the form Def(hoen → P), where P is some operad. The differential on this
complex then has the form

d = δ + [α, ·] (5)

where δ is induced by the differential on P and α is the Maurer-Cartan element
defined by the map hoen → P . Most of the time, the latter map will in addition
factor as

hoen → en → P

where the first map is the canonical projection. In this case the only nonva-
nishing part of α in the direct product decomposition (3) is that for N = 2.
e∨n (2) is two dimensional and we may split α = α∧ + α[,] into one part for
each of the two co-generators. We will furthermore abbreviate

d∧ := [α∧, ·] d[,] :=
[
α[,], ·

]
. (6)

Hence the differential becomes

d = δ + d∧ + d[,] (7)

Remark 2.5 Although we will often follow the notation and terminology of
[32], there is one notable conflict of notation: We introduce in Appendix I the
(novel) notion of operadic twisting and will denote the twisted version of an
operad P by TwP . This has nothing to do with the notation Tw (for twisting
cochains) as used in [32, section 6.4.8].

3 Graph operads and graph complexes

Several versions of graph complexes have been introduced by M. Kontsevich
[23,25].2 Let us define them here in a combinatorial way. Let dgraN ,k be
the set of directed graphs with N numbered vertices and k ordered directed
edges. Concretely, a graph in dgraN ,k is given by a k-tuple of pairs (i, j),
1 ≤ i, j ≤ N , a pair (i, j) representing an edge from vertex i to vertex j .
We explicitly allow multiple edges and tadpoles, i. e., edges of the form (i, i).
There is a natural action of the permutation group Pk = Sk ⋉ S×k

2 on dgran,k

by permuting the order and flipping the directions of the edges. Denote by
sgnk the one-dimensional sign representations of Sk . We will understand sgnk

2 Strictly speaking, we consider the cohomological version here, while M. Kontsevich mainly
considers the pre-dual, homological version in [23]. It does not matter much.
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680 T. Willwacher

2

1

1

2 3

◦1 =

2

1

3

4

+ +

Fig. 1 The operadic insertion in the operads Gran

(respectively sgn⊗k
2 ) as a representation of Pk by letting S×k

2 (respectively Sk)
act trivially. Define graded vector spaces as follows.

Gra�
n (N ) =

{⊕
k≥0

(
K〈dgraN ,k〉 ⊗Pk

sgnk

)
[k(n − 1)] n even

⊕
k≥0

(
K〈dgraN ,k〉 ⊗Pk

sgn⊗k
2

)
[k(n − 1)] n odd.

In words, we give each edge the degree 1 − n, and introduce the appropriate
signs. For n odd we additionally fix an orientation on the graph by prescribing
directions on edges, identifying the graph with an edge direction flipped with
minus the original graph. The spaces Gra�

n (N ) naturally assemble to operads
Gra�

n . The SN action is given by permuting the labels on the vertices. The
operadic compositions Ŵ1 ◦ j Ŵ2 are given by ‘inserting” the graph Ŵ2 at vertex
j of graph Ŵ1 and summing over all possible ways of reconnecting the edges
incident to vertex j in Ŵ1 to vertices of Ŵ2, see Fig. 1. In case n is even one
needs to put an ordering (up to signed permutation) on the edges of the newly
formed graphs. The natural choice is to consider the edges of Ŵ1 to stand on
the left of those of Ŵ2.

We furthermore define

Gran ⊂ Gra�
n

to be the sub-operads spanned by graphs without tadpoles.

Remark 3.1 Note that by symmetry reasons, there can be tadpoles in graphs
occurring in Gra�

n only for n even, and multiple edges only for n odd. More
precisely, for n odd the operation of flipping a tadpole edge is odd, hence a
graph containing a tadpole yields a zero element of Gra�

n for n odd. Similarly,
for n even the operation of permuting two edges of a multiple edge is odd. In
particular Gra�

n = Gran for n odd.

The signs in the definition of the operad Gran are chosen so that there is an
injective map

en → Gran
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M. Kontsevich’s graph complex 681

Fig. 2 Three graphs in
fGCn . The differential in
fGCn is the Lie bracket with
the right hand graph

from the operad en governing n algebras to Gran . The operad en is generated by
two binary operations, the product operation · ∧ · of degree 0 and the bracket
operation [·, ·] of degree 1 − n. These operations are mapped to graphs as
follows.

(8)

By restriction, one obtains maps Lie{n−1} → Gran from the degree shifted
Lie operad Lie{n−1}, and hence also maps hoLien → Gran from its minimal
resolution hoLien to Gran . The full graph complex fGCn is by definition the
deformation complex of the latter map.

fGCn := Def(hoLien → Gran)

As a graded vector space, fGCn is just the space of (anti-)invariant elements
in Gran under the action of the permutation group.

fGCn
∼=

{∏
N (Gran(N )[n(1− N )])SN n even∏
N (Gran(N )⊗ sgnN [n(1− N )])SN n odd.

Remark 3.2 In pictures, we shall draw elements of fGCn as undirected graphs
with unlabelled black vertices. To actually obtain an element of fGCn from
such a picture, one has to choose an ordering and directions of the edges, sum
over all possible ways of assigning labels 1, 2, . . . to the vertices and divide
by the order of the symmetry group of that graph. The overall sign is left
undetermined. See Fig. 2 for examples of elements in fGCn .

By the description as a deformation complex, we know that fGCn has the
structure of a differential graded Lie algebra. Similarly, we define a dg Lie
algebra fGC�

n ⊃ fGCn as

fGC�
n := Def(hoLien → Gra�

n ).

It differs from fGCn only in so far that tadpoles are permitted in graphs.
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682 T. Willwacher

d

d

d

d

= −

= 0
= 0

= +

Fig. 3 Several example computations of the graph differential. Note that in drawing these
pictures we are cheating a bit since the signs are ambiguous

Remark 3.3 Combinatorially, the differential applied to some graph Ŵ has the
form

dŴ“ = ”
∑

v∈V (Ŵ)

1

2
(splitting of v)− (adding an edge at v).

Here the sum runs over all vertices of Ŵ. The “(splitting of v)” means the vertex
v is replaced by a pair of vertices connected by an edge, and one sums over
all possible ways of reconnecting the incoming edges at v to the two newly
created vertices. The term “(adding an edge at v)” stands for a graph obtained
by adding a new vertex and connecting it to v. If there are any incoming edges
at v, the second term cancels those graphs from the first term, in which all
incoming edges at v had been connected to one of the newly added vertices.
Several examples can be found in Fig. 3.

Every graph can be seen as a union of its connected components. Hence we
can write

fGCn = S+(fGCn,conn[−n])[n]

where fGCn,conn is the subcomplex of fGCn spanned by the connected graphs.
Similarly,

fGC�
n = S+(fGC�

n,conn[−n])[n]

where fGC�
n,conn is the subcomplex of fGC�

n spanned by the connected graphs.
We define M. Kontsevich’s graph complex GCn to be the subspace of fGCn,conn

spanned by those graphs with all vertices of valence at least 3. A significant
part of the following proposition has been proven by M. Kontsevich.
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M. Kontsevich’s graph complex 683

Proposition 3.4 [partially contained in [23,24]] GCn ⊂ fGC�
n is a sub-dg

Lie algebra. The cohomology satisfies

H(fGC�
n,conn) = H(GCn)⊕

⊕

j≥1
j≡2n+1 mod 4

K[n − j]

H(fGCn,conn) = H(GCn)⊕
⊕

j≥3
j≡2n+1 mod 4

K[n − j].

Here, the class corresponding to K[n − j] is represented by a loop with j

edges, as in Fig. 5.

Proof (Sketch of proof) A part of the proof is already contained in [23,24].
First note that the differential does not produce any vertices of valence ≤ 1,
nor can it produce tadpoles or multiple edges if there were none in the graph
before. Assume a graph Ŵ with all vertices at least trivalent is given. Then the
differential dŴ contains graphs with one bivalent vertex, one such graph for
every edge. However, each such graph comes twice with opposing signs, from
splitting either one of the adjacent vertices. Pictorially:

Hence we can conclude that dGCn ⊂ GCn . This shows that GCn is indeed
a subcomplex. Next Let GC1

n be the space spanned by graphs having at least
one vertex of valence 1, and let GC2

n be the space spanned by graphs having
no vertex of valence one, but at least one vertex of valence two. Such vertices
cannot be killed by the differential and hence we have a decomposition (of
complexes)

fGCn,conn
∼= GC≥3

n ⊕GC2
n ⊕GC1

n

where GC≥3
n is spanned by graphs containing only at least trivalent vertices.

We claim that GC1
n is acyclic. Indeed for the subcomplex of graphs not

containing a trivalent vertex (i.e., “linear graphs”), this is easily shown. Assume
next that a graph, say Ŵ, has at least one trivalent vertex. We call an “antenna”
a maximal connected subgraph consisting of one- and two-valent vertices in
Ŵ. Then full graph Ŵ can be seen as some “core graph” (the complement of
the union of all antennas) with antennas of various lengths attached. See Fig.
4 for a graphical illustration of those terms. One can set up a spectral sequence
such that the first differential is the one increasing the sum of the lengths of
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684 T. Willwacher

Fig. 4 The “antennas” in the
graph are drawn in gray

Fig. 5 Some graphs from the subcomplex of “loops”, as occuring in the proof of Proposition
3.4. Some of these graphs (depending on n) are zero by symmetry

the antennas. It is easily seen that this complex is acyclic and hence the claim
is shown.3

Next we claim that the cohomology of GC2
n is

H(GC2
n) =

⊕

j≥1
j≡2n+1 mod 4

K[n − j].

Indeed one checks that this is the cohomology of the subcomplex of GC2
n

spanned by graphs without trivalent vertices, i. e., by the “loop” graphs (see
Fig. 5). Hence the claim reduces to showing that the subcomplex of GC2

n

spanned by graphs having at least one trivalent vertex is acyclic. For such a
graph Ŵ, define its core to be the graph obtained by deleting all bivalent vertices
and, for each deleted vertex, connecting the two adjacent edges. Each edge in
the core can be labelled by a natural number k, recording how many edges of
Ŵ were joined in forming that edge of the core. From the labelled core graph,
the original graph Ŵ may be reconstructed. For example:

One can set up a spectral sequence such that the first differential increases
one of the labels on the core by one, i. e., it creates a vertex of valence 2. More
precisely, the differential will increase only any even label and map oddly

3 Worries about the convergence of this spectral sequence are adressed in Appendix G.
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Fig. 6 Picture of the part of the differential on GC
≥3
n producing a valence three tadpole vertex,

as occuring in the proof of Proposition 3.4

labelled edges to zero. It is easily checked that the resulting complex is indeed
acyclic. Here some care has to be taken in case some labelled edge forms a
tadpole, but the argument still works.

Finally consider GC≥3
n . We still need to show that we can omit the tadpoles.

One can set up a spectral sequence coming from the filtration according to the
number of tadpole vertices of valence three. The first differential hence pro-
duces such a vertex, see Fig. 6. Similar arguments as for GC1

n then show that the
cohomology is given by the tadpole-free graphs. This proves the proposition.

⊓⊔

The complexes GCn are Kontsevich’s (cohomological) graph complexes,
see [23–25]. We note that the complexes GCn for even n are isomorphic, if one
reduces the Z grading to a Z2 grading. The same holds true for the complexes
GCn for odd n. However, we do not know a way of relating the cohomology
of the even n to that of the odd n complexes.

Remark 3.5 As noted by Conant et al. [10], the subcomplex of GCn spanned
by 1-vertex irreducible graphs is quasi-isomorphic to GCn . We give a short
sketch of a proof in Appendix F.

3.1 Action on polyvector fields and M. Kontsevich’s motivation

For n ∈ Z, r ∈ N consider the graded commutative polynomial algebra

A = K[x1, . . . , xr , ξ1, . . . , ξr ]

where the x j have degree 0 and the ξ j have degree n−1. This algebra becomes
an en algebra if we impose the relations

[
ξi , x j

]
= δi j .

In fact, the en algebra structure is obtained from a Gran algebra structure on
A, via pull-back along the inclusion en → Gran we encountered above. The
action of an element Ŵ ∈ Gran(N ) determined by a graph which we also
denote Ŵ ∈ dgraN ,k with edge set E(Ŵ) is
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Ŵ · (γ1, . . . , γN ) = μN

⎛
⎝

∏

(i, j)∈E(Ŵ)

πi j (γ1 ⊗ · · · ⊗ γN )

⎞
⎠ .

Here γ1, . . . , γN ∈ A, μN is the N -fold product and

πi j :=
r∑

l=1

∂

∂ξ
(i)
l

∂

∂x
( j)
l

+ (−1)n ∂

∂ξ
( j)
l

∂

∂x
(i)
l

(9)

where the superscripts (i) and ( j) shall indicate that the derivative acts on the
i th, respectively j th factor in the tensor product. We leave it to the reader to
verify that this formula is well defined and that it defines an action of Gran on
A.

It follows that there is a map of complexes

fGCn → C(A)

from the full graph complex to the Chevalley–Eilenberg complex of the Lie{n−
1} algebra A. In fact, this map is injective and one may think of fGCn as a
“universal version” (independent of the dimension r ) of C(A). See [47] for a
more precise form of this statement.

Note also that for K = R we may take instead of A the larger algebra

A′ = C∞(Rr )[ξ1, . . . , ξr ]

and all statements above remain valid. In particular for n = 2 this is the space
of polyvector fields on Rr . M. Kontsevich’s motivation for considering the
graph complex GC2 in [25] was the following: For n = 2, we obtain a map
from GC2 into the Chevalley-Eilenberg complex of the space of polyvector
fields. However, the first cohomology of this complex is the natural recipient for
obstructions in the construction of a formality morphism. If one only consider a
special class of tentative formality morphisms, defined through certain graphs
(“Kontsevich graphs”) then one may make the obstruction fall into H1(GC2).
It is a difficult open conjecture that H1(GC2) = 0.

3.2 The (twisted) operads Graphsn

In his proof of the formality of the little cubes operads [26], M. Kontse-
vich introduced operads Graphsn , whose elements are linear combinations
of graphs with two kinds of vertices: (i) “external” vertices, which are num-
bered 1, . . . , N and (ii) “internal” vertices, which are “indistinguishable”, i.
e., unnumbered. For a combinatorial description of these operads we refer the
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Fig. 7 A typical graph from
fGraphsn(3) (left) and one
from Graphsn(4) ⊂
fGraphsn(4) (right)

reader to [26, section 3.3.3]. Here we will take a slightly different standpoint
and re-define the operads Graphsn in a way that makes their relation to the
operads Gran we encountered before and to the graph complexes GCn more
transparent. Concretely, there is an operation we call operadic twisting, which,
from an operad P with an arrow Lie{k} → P , produces in a functorial way
another operad TwP , with an arrow Lie{k} → TwP . The general theory of
operadic twisting is described in Appendix I, and in more detail in [14]. If we
apply the twisting functor to the operad Gran (with k = n − 1) we obtain an
operad

fGraphsn := TwGran.

Generators of fGraphsn(N ) (as a vector space) can be depicted by graphs with
two kinds of vertices: (i) “external” vertices, which are numbered 1, . . . , N

and (ii) “internal” vertices, which are “indistinguishable”. In pictures, we draw
external vertices white and internal vertices black. For an example, see Fig.
7. The operadic composition is obtained by insertion at external vertices, sim-
ilarly to the composition in Gran . One can repeat the construction allowing
tadpoles to obtain operads

fGraphs�
n := TwGra�

n .

Definition/Lemma 3.6 We define Graphs�
n ⊂ fGraphs�

n be the sub-operad

spanned by graphs with all internal vertices at least trivalent and with

no connected component consisting entirely of internal vertices. We define

Graphsn = Graphs�
n ∩ fGraphsn to be the suboperad spanned by graphs

without tadpoles.

Proof One needs to show that the subspaces Graphs�
n and Graphsn are closed

under the differential and under the operadic compositions. However, using
the explicit description of the differential and the composition from Appendix
I it is straightforward to check that neither of the forbidden features can be
created by insertions or the differential. ⊓⊔

The operad Graphsn as in the above definition agrees with the operad
Graphsn as defined by M. Kontsevich [26, section 3.3.3]. The theory of
operadic twisting guarantees that there is an action of the deformation com-
plex Def(hoLiek+1 → P) on the twisted operad TwP by derivations. In
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our setting, this means that there is an action of the full graph complex
fGCn = Def(hoLien → Gran) on the operad fGraphsn := TwGran .

Lemma 3.7 The suboperad Graphsn ⊂ fGraphsn is closed under the action

of the sub-dg Lie algebra GCn ⊂ fGCn .

Proof A straightforward verification, given the explicit description of the
action as in Appendix I.3. ⊓⊔

The action of GCn on Graphsn will be important later. Let us discuss the
cohomology of the operads Graphsn , Graphs�

n , fGraphsn and fGraphs�
n .

Note that there is a splitting

fGraphsn(N ) = fGraphsn,c(N )⊗ (K⊕ fGCn[−n])

where fGraphsn,c is the suboperad consisting of graphs with no connected
components consisting entirely of internal vertices. For the version with tad-
poles there is a similar splitting

fGraphs�
n (N ) = fGraphs�

n,c(N )⊗ (K⊕ fGC�
n [−n]).

Copying the proof of Proposition 3.4, one can show the following.

Proposition 3.8 The inclusions

are quasi-isomorphisms.

The cohomology of Graphsn has been computed by M. Kontsevich [26]
and also Lambrechts and Volic [30].

Proposition 3.9 ( [26,30]) The map en → Graphsn (defined by the assign-

ments (8)) is a quasi-isomorphism. In particular

H(Graphsn)
∼= en.

Remark 3.10 We note in particular that the cohomology of Graphs�

2 is the
Gerstenhaber operad e2 and not the Batalin-Vilkovisky (BV) operad. However,
if one quotients out from Graphs�

2 the spaces spanned by graphs with a tadpole
at an internal vertex, the cohomology is the BV operad.
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Following [44], one notes that each graph in Graphsn decomposes into a
(co)product of internally connected components. Here “internally connected”
means connected after deleting all external vertices. One can hence write

Graphsn = S(ICGn[1]) (10)

and similarly
Graphs�

n = S(ICG�
n [1])

where ICGn (respectively ICG�
n )is spanned by internally connected graphs,

shifted in degree by 1.4 One checks that the differential is compatible with the
coproduct and hence the spaces ICGn (respectively ICG�

n ) form (operads of)
L∞ algebras.

The following proposition was shown in [44] for n = 2.

Proposition 3.11 The cohomologies of the ICGn and ICG�
n are the comple-

tions of the (operads of) graded Lie algebras t(n), where t(n)(N ) is generated

by symbols ti j = (−1)nt j i , 1 ≤ i �= j ≤ N, of degree 2 − n, with relations[
ti j , tik + t jk

]
= 0 for #{i, j, k} = 3 and

[
ti j , tkl

]
= 0 for #{i, j, k, l} = 4.

Proof Copy the proof of the Appendix of [44] and change the gradings. ⊓⊔

In the following, we will mostly use the n = 2 case, which we abbreviate by
t := t(2).

Remark 3.12 Here it is crucial that we allow multiple edges for n odd. Other-
wise it is not true that Graphsn = S(ICGn[1]).

4 A spectral sequence for Def(hoen → P)

We will often deal with deformation complexes of the form Def(hoen → P).
In this section we introduce a spectral sequence to compute their cohomology.
We apply this tool to compute H(Def(hoen → P)) or reduce the computation
to a simpler one for several P .

4.1 A grading on en and a filtration on Def(hoen → P)

It is a well known fact that the symmetric sequence en may be written as

en = Com ◦ Lie{n − 1}

4 In [44] the notation CG has been used instead of ICG. We use the latter notation to prevent
confusion with GC.
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where ◦ is the monoidal product in the category of symmetric sequences, i.e.,
the “plethysm” operation. More concretely, this means that en(N ) is a direct
sum of spaces of the form

Com(k)⊗ Lie{n − 1}(i1)⊗ · · · ⊗ Lie{n − 1}(ik)

where k ∈ {1, . . . , N } and i1, . . . , ik are such that i1 + · · · + ik = N . There is
a grading on en by the number k − 1. It can be checked to be compatible with
the operad structure.

Remark 4.1 On any graded operad (i. e., one for which the differential is zero)
there exist two “trivial” gradings, one by the arity minus one, and one by the
cohomological degree. The grading we consider here has the form

(arity)− 1+ (cohomological degree)/(n − 1).

Dually we obtain a grading on the cooperads e∗n and furthermore on the
cooperads e∗n{n} = e∨n Koszul dual to en . This grading also transfers to the
operads hoen = �(e∨n ). Now let P be some other operad and

f : hoen → P

an operad map. Let us consider P to be concentrated in degree zero with respect
to our additional grading. Of course f will then not respect the additional
grading in general. However, since �(e∨n ) is concentrated in non-negative
degrees we still inherit a descending filtration F on the complex

Def(hoen → P).

We will use the associated spectral sequence as a tool to compute H(Def(hoen

→ P)) in some cases below.

4.2 The special case P = Graphs�
n

Consider P = Graphs�
n . The goal of this subsection is to identify a certain

subcomplex of Def(hoen → Graphs�
n ) which is quasi-isomorphic to the full

complex.

Definition/Lemma 4.2 We define fC ⊂ Def(hoen → Graphs�
n ) to be the

subcomplex spanned by elements x ∈ Def(hoen → Graphs�
n ) such that

(1) The image of all components of x (which are maps in HomSN
(e∨n (N ),

Graphs�
n (N )), N = 1, 2, . . . ) is in the space of linear combinations of

graphs all of whose external vertices have valence exactly 1.
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(2) The components of x vanish on all of e∨n (N ) except possibly on the sub-

space of bottom cohomological degree (1− N )n. (Or put differently, the

components of x descend to the quotient Com∗{n}.)
Interpreting elements of Def(hoen → Graphs�

n ) combinatorially as linear
combinations of certain graphs as explained in Appendix C, fC may alterna-
tively be defined as the subspace spanned by graphs with all clusters of size
one, and all external vertices of valence one. The differential has two pieces,
one splits internal vertices, and one attaches a new external vertex of valence
one to some internal vertex.

Proof (Proof of Definition/Lemma 4.2.) We need to show that the subspace
fC defined above is indeed a subcomplex. The differential on Def(hoen →
Graphs�

n ) splits as in (7). It is clear that δ may not invalidate the second con-
dition of the definition. Furthermore, δ at most decreases valences of vertices,
and cannot produce new valence one vertices, so it also cannot invalidate the
first condition. The effect of the other terms in the differential, i. e., of the
bracket with the Maurer–Cartan element α is most easily discussed using the
graphical interpretation of elements of Def(hoen → Graphs�

n ) as in Appen-
dix C. Also note that [α, ·] = α ◦ · ± · ◦ α where ◦ is the pre-Lie product in
Def(hoen → Graphs�

n ). Both operations α∧ ◦ · and · ◦ α∧ will create graphs
with one cluster of size two from a graph with all clusters of size one. However,
since the external vertices have valence one, the terms produced are identical
and cancel each other. Hence [α∧, ·] acts trivially on fC. The operation

[
α[,], ·

]

adds one cluster of size one, and does not change cluster sizes otherwise, hence
it automatically preserves the second property demanded for in the definition.
However, it might a priori invalidate the first. The violating terms are graphs
with one external vertex of valence two, connected to some other external ver-
tex. But again, these terms are produced in pairs, one by α[,] ◦ · and one by
· ◦ α[,], and cancel. ⊓⊔

The main result of this subsection is the following.

Proposition 4.3 The inclusion fC → Def(hoen → Graphs�
n ) is a quasi-

isomorphism.

The proposition will follow from the following Lemma.

Lemma 4.4 The operation d∧ squares to zero and the inclusion

(fC, 0) → (Def(hoen → Graphs�
n ), d∧)

is a quasi-isomorphism, where the notation means that the left hand side

is considered a complex with trivial differential and the right hand side is

considered a complex with differential d∧. Here d∧ is as in (6).
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692 T. Willwacher

Proof The first assertion follows from the Maurer–Cartan equation

δα + 1

2
[α, α] = 0

with α = α∧+α[,] [as in (7)] by restriction. For the second assertion we have
to compute the cohomology of V := (Def(hoen → Graphs�

n ), d∧). Let the
character of a graph Ŵ with external and internal vertices be the isomorphism
class of the graph obtained by deleting the external vertices but keeping the
dangling edges. The differential on V does not alter the character and hence
V splits into a direct product of subcomplexes, one for each character. Call
the subcomplex Vc for the fixed character c, say with k dangling edges. To
c is associated some automorphism group G acting by permutations on the
dangling edges. Concretely, Vc is isomorphic to the complex

k
⊕

p=1
V G

p,k,n

up to an overall degree shift depending on c. Here Vp,k,n is as in Appen-
dix A. It then follows from Lemma A.1 that Vc has one dimensional coho-
mology, and tracing the representative, one sees that this is an element in
the (one dimensional) intersection of Vc with the image of the inclusion
(fC, 0) → (Def(hoen → Graphs�

n ), d∧). The statement of the lemma imme-
diately follows. ⊓⊔

In the following proofs we will use some spectral sequence arguments. The
following lemma will settle convergence.

Lemma 4.5 Def(hoen → Graphs�
n ) decomposes into a direct product of

subcomplexes which are finite dimensional in each degree.

Proof We put an additional filtration on Graphs�
n by assigning to a graph with

v internal vertices and e edges the degree v− e. The differential on Graphs�
n

preserves this degree. Furthermore we assign a co-Gerstenhaber word in e∨n (N )

with b cobrackets the degree b − N . This yields a grading on each factor
in the direct product (3). One checks that the differential on Def(hoen →
Graphs�

n ) does not alter the additional degree, and hence the direct product
of the (additional) degree k components of all factors yields a subcomplex. In
each such subcomplex, fixing the cohomological degree fixes the total number
of vertices and bounds the number of edges in graphs occurring. This leaves a
finite dimensional subspace. Note also that using the graphical interpretation of
elements of Def(hoen → Graphs�

n ) from Appendix C the additional degree
is the total number of vertices minus the total number of edges, i. e., the Euler
characteristic. ⊓⊔
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The following technical proposition will be used in later sections.

Proposition 4.6 The operation δ + d∧ squares to zero and the inclusion

(fC, δ) → (Def(hoen → Graphs�
n ), δ + d∧)

is a quasi-isomorphism.

Proof Take a filtration on the mapping cone by the cohomological degree in
Graphs�

n . The associated graded is the mapping cone of the map in Lemma 4.4
and hence acyclic. The Lemma then follows from Lemma 4.5. More explicitly:
The mapping cone is a direct product of subcomplexes as in Lemma 4.5. On
each subcomplex the filtration is bounded and hence the spectral sequence
converges to cohomology. Hence each subcomplex is acyclic. Hence their
direct product, i. e., the mapping cone is acyclic. ⊓⊔

Remark 4.7 Let f̃ : en → Graphs�
n be the operad map mapping the product

generator to the graph without edges as in (8), but mapping the bracket to zero.

Let further f̃ ′ be the composition hoen → en
f̃−→ Graphs�

n . Then

(Def(hoen → Graphs�
n ), δ + d∧) ∼= Def(hoen

f̃−→ Graphs�
n )

may be understood as a deformation complex as well.

Proof (Proof of Proposition 4.3.) We have to show that the mapping cone
is acyclic. To do this consider the spectral sequence coming from the filtra-
tion of section 4.1. The differential on the associated graded of Def(hoen →
Graphs�

n ) has the form δ + d∧. The differential on the associated graded of
fC is just δ. Proposition 4.6 then says that the associated graded of the map-
ping cone is acyclic. It again follows by Lemma 4.5 that the mapping cone is
acyclic. ⊓⊔

4.2.1 The connected part

Let us again use the graphical interpretation of elements Def(hoen →
Graphs�

n ) from Appendix C. Let

Def(hoen → Graphs�
n )conn ⊂ Def(hoen → Graphs�

n )

be the subcomplex generated by the connected graphs. Any graph decomposes
into its connected components and the differential may combinatorially neither
glue nor disconnect components. Hence

Def(hoen → Graphs�
n ) ∼= S+(Def(hoen → Graphs�

n )conn)
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as complexes. Similarly let fCconn ⊂ fC be the intersection of fC and
Def(hoen → Graphs�

n )conn. Alternatively, it may be described as the space
of maps which take values in Graphs�

n which are linear combinations of con-
nected graphs. The complex fC splits into a symmetric product of its connected
subcomplex

fC = S+(fCconn).

Furthermore, checking the proof of Propositions 4.3 and 4.6 we see that the
result restricts to the connected parts.

Proposition 4.8 The inclusions

(fCconn, δ) → (Def(hoen → Graphs�
n )conn, δ + d∧)

and

fCconn → Def(hoen → Graphs�
n )conn

are quasi-isomorphisms.

4.2.2 A closer look at fCconn

This subsection contains some technical calculations, the motivation for which
will be given in Sect. 7 below. Let g be an operad in L∞ algebras. Its (com-
pleted) Chevalley complexes

C(g)(N ) := C(g(N )) ∼=
∏

k≥0

Sk(g(N )[1])

form an operad C(g) of dg vector spaces. There is always a map

Com → C(g)

by sending the product operation to the basis element of K ∼= S0(g(2)[1]) ⊂
C(g)(2). Also, there is a map

en → C(g)

by pre-composing with the map en → Com that sends the bracket operation to
zero and the product operation to the product operation. Denote the composi-
tion Com∞ → Com → C(g) by f and the composition hoen → en → C(g)
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by g. Then we may form the complexes

Def(Com∞
f−→ C(g)) ∼=

∏

N≥1

∏

k≥0

HomSN
(Com∨(N ), Sk(g(N )[1]))

Def(hoen
g−→ C(g)) ∼=

∏

N≥1

∏

k≥0

HomSN
(e∨n (N ), Sk(g(N )[1])).

One checks that the subspaces

∏

N≥1

HomSN
(Com∨(N ), g(N )[1])

and
∏

N≥1

HomSN
(e∨n (N ), g(N )[1])

are subcomplexes, which we denote (by abuse of notation)

Def(Com∞ → g[1])

and

Def(hoen → g[1]).

One example is g = ICG�
n , for which

Graphs�
n (N ) ∼= C(ICG�

n (N )).

Note that the complex fCconn from above is a subcomplex of Def(hoen →
ICG�

n [1]).
Proposition 4.9 The inclusion

(fCconn, δ) ⊂ (Def(hoen → ICG�
n [1]), δ + d∧)

is a quasi-isomorphism.

Proof The proof is a copy of the proofs of Propositions 4.3, 4.6. ⊓⊔

Another interesting example is the (completed) Drinfeld-Kohno operad of
Lie algebras t̂. Recall from [44] that it is quasi-isomorphic to ICG2, and hence
to ICG�

2 . Using this fact one may show the following result.

Proposition 4.10 H(Def(hoe2 → ICG�

2 [1])) ∼= H(Def(hoe2 → t̂[1])).

123



696 T. Willwacher

Proof There is a zig-zag of quasi-isomorphisms

t̂ ← TCG� → ICG�

2 .

where TCG� (the truncated version of ICG�

2 ) is identical to ICG�

2 in degrees
< 0, is zero in degrees > 0 and the closed subspaces of ICG�

2 in degree 0. The
right hand arrow is the inclusion, while the left hand arrow is the projection
of the degree 0 part to the cohomology. We may hence form a zig-zag of
complexes

Def(hoe2 → t̂[1]) ← Def(hoe2 → TCG�[1]) → Def(hoe2 → ICG�

2 [1]).

Put a filtration on the mapping cones of each map by the total cohomological
degree minus the cohomological degrees of TCG� and ICG�

2 . The associated
graded is acyclic, hence by arguments similar to those in the proof of Lemma
4.6 the mapping cones are acyclic. ⊓⊔

4.3 The special case P = Gra�
n

The operad Gra�
n is a quotient of Graphs�

n obtained by sending to zero all
graphs with internal vertices. The corresponding quotient of fC is rather triv-
ial, being either one-dimensional (n even) or a symmetric product of a one
dimensional space. One may copy verbatim the proofs of Propositions 4.3 and
4.8 to arrive at the following result.

Proposition 4.11 The cohomologies of Def(hoen → Gra�
n )conn and

Def(hoen → Gra�
n ) satisfy

H(Def(hoen → Gra�
n )conn) ∼= K[−1]

H(Def(hoen → Gra�
n )) ∼= S+(K[−n − 1])[n].

Remark 4.12 The cohomology class K[−1] corresponds to a relative rescaling
of the Lie bracket and product. It corresponds to a graph with two vertices (each
in its own cluster) and one edge. Elements of the symmetric product correspond
to unions of such graphs. This is only possible for n odd by symmetry reasons,
otherwise the cohomology is just one-dimensional.

Remark 4.13 For n = 2 this result is the “universal” version of the well-
known statement that the Gerstenhaber algebra Tpoly of polyvector fields on
Rn is non-deformable, up to homotopy. The operads Gra2 or Gra�

2 can be
seen as universal versions of the operad End(Tpoly).
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5 The map between GCn and Der(hoen)

In this section we will define the map between H(GCn) and H(Der(hoen)). In
fact, we know two distinct ways to describe that map, and it is advantageous to
know both. We will give the first definition in Sect. 5.2 and the second definition
in Sect. 5.3 and show that the two maps thus defined are identical in Sect. 5.4.

5.1 Reduction to the connected part

Any graph may be split into its connected components. In Sect. 3 we saw that
the differential on the full graph complex fGCn respects this splitting, and fGCn

can be written as a symmetric product of the subcomplex fGCn,conn spanned
by connected graphs. The goal of this subsection is to describe an analogous,
but less obvious notion of “connectedness” for some basis elements of the
complex Def(hoen → en). Concretely, we will define a subcomplex

Def(hoen → en)conn ⊂ Def(hoen → en)

which we call the “connected part” of Def(hoen → en) such that

Def(hoen → en) ∼= S+(Def(hoen → en)conn[−n])[n]

as complexes. Here S+(· · · ) denotes the completed symmetric product space,
without the term K, as in (2). To define the connected part, recall the well
known fact that

en
∼= Com ◦ Lie{n − 1}

as S-modules, where “◦” is the usual monoidal product in the category of S-
modules, see [32, section 5.1.6]. This may be re-stated by saying that operations
in en(N ) can be identified with linear combinations of expressions of the form

L1(X1, · · · , X N ) ∧ · · · ∧ Lk(X1, · · · , X N ) (11)

where X1, . . . , X N are formal variables, L j are Lie{n−1}-words and each X i

occurs exactly once in the expression. The action of the symmetric group SN on
en(N ) is given by permuting the indexes of the formal variables X1, . . . , X N .
Picking some set of Lie{n − 1}-words forming a basis for Lie{n − 1}(m) for
each m (for example the one from [32, section 13.2.5]) a basis of en(N ) by a
set of expressions of the above form may be written down.

Next consider again
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Def(hoen → en) =
∏

N≥1

HomSN
(e∗n{n}(N ), en(N ))

∼=
∏

N≥1

(
en(N )⊗ en(N )⊗ sgn⊗n[(1− N )n]

)SN .

Similarly to what was said above, we can define a basis of en(N ) ⊗ en(N )

given by a set of expressions of the form

φ := (L1(X1, . . . , X N ) ∧ . . . ∧ Lk(X1, . . . , X N ))

⊗(L ′1(Y1, . . . , YN ) ∧ . . . ∧ L ′k′(Y1, . . . , YN )) (12)

where X1, . . . , X N , Y1, . . . , YN are formal variables and L1, . . . , L ′
k′ are

Lie{n − 1}-words such that each formal variable occurs exactly once in
the expression. We say that two Lie{n − 1}-words L(X1, . . . , X N ) and
L ′(Y1, . . . , YN ) share a variable if there is some integer j such that X j occurs
in L and Y j occurs in L ′. For example [X1, X2] and [Y5, Y2] share a variable
while [X1, X2] and [Y5, Y4] do not. Given some formal expression φ of the
form (12) we say that Lie words L i and L ′j are connected in this expression
if there is an ordered set of integers j1, i1, . . . , jr , ir (r is some other integer)
such that L i and L ′j1 share a variable, L i1 and L ′j1 share a variable, L i1 and L ′j2
share a variable etc., and finally L ir and L ′j share a variable. Similarly, we say
that L i and L j (resp. L ′i and L ′j ) are connected if i = j or if L i and L j (resp.
L ′i and L ′j ) if there is a sequence of integers j1, i1, . . . , jr (resp. i1, j1, . . . , ir )
such that L i shares a variable with L ′j1 , which shares a variable with L i1 etc.
Clearly connectedness defines an equivalence relation on the set {L1, . . . , L ′

k′}
of Lie{n − 1}-words occurring in the expression φ. We define the number of

connected components of φ as the number of equivalence classes under this
equivalence relation. We say that φ is connected if its number of connected
components is one.

Example 5.1 The expression

([X1, X2] ∧ [X3, X4])⊗ (Y1 ∧ [Y2, Y3] ∧ Y4)

is connected while the expression

([X1, X2] ∧ [X3, X4])⊗ ([Y1, Y2] ∧ Y3 ∧ Y4)

has two connected components.

Picking a basis of en(N ) ⊗ en(N ) by expressions of the form (12) we may
define the subspace
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VN ⊂ en(N )⊗ en(N )

spanned by the connected basis elements. VN does not depend on the particular
choice of basis and it is closed under the action of SN . We now define

Def(hoen → en)conn=
∏

N≥1

(
VN ⊗ sgn⊗n[(1−N )n]

)SN ⊂ Def(hoen → en).

Proposition 5.2 Def(hoen → en)conn ⊂ Def(hoen → en) is a sub-complex

and furthermore

Def(hoen → en) ∼= S+(Def(hoen → en)conn[−n])[n]

as complexes, where S+(· · · ) is the completed symmetric product space, see

(2). In particular

H(Def(hoen → en)) ∼= S+(H(Def(hoen → en)conn)[−n])[n].

Proof A straightforward verification. ⊓⊔
In order to prove Theorem 1.3 it suffices to show below the following result

Proposition 5.3 There is an injective map H(fGCn,conn) → H(Def(hoen →
en)conn) with one-dimensional co-kernel, concentrated in degree 0.

5.2 The first description of the map

There are canonical quasi-isomorphisms

hoen → en → Graphsn → fGraphs�
n,c,

and hence also quasi-isomorphisms of complexes5

Der(hoen)[−1] → Def(hoen → en) → Def(hoen → Graphsn) →
Def(hoen → fGraphs�

n,c). (13)

Elements of the complex on the right can be written as linear combinations of
graphs, with certain symmetry properties. See Appendix C for a more detailed
description. Any such graph splits into a union of its connected components,
and the differential acts on each component separately and preserves connect-
edness. Let Def(hoen → fGraphs�

n,c)conn ⊂ Def(hoen → fGraphs�
n,c) be

the subspace spanned by the connected graphs. Then

5 Our conventions regarding deformation complexes are stated in Sect. 2.
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Def(hoen → fGraphs�
n,c)

∼= S+(Def(hoen → fGraphs�
n,c)conn[−n])[n]

as complexes. The dg Lie algebra fGC�
n,conn acts canonically on fGraphs�

n,c

by operadic derivations, see Lemma 3.7. By composition with the map
hoen → fGraphs�

n,c one obtains from any derivation of fGraphs�
n,c an element

in Def(hoen → fGraphs�
n,c). Derivations coming from elements of fGC�

n,conn

in fact are mapped into the connected part Def(hoen → fGraphs�
n,c)conn.

Hence there is a map of complexes

� : fGC�
n,conn → Def(hoen → fGraphs�

n,c)conn[1].

Let us denote by �̄ the composition

H(fGC�
n,conn) → H(Def(hoen → fGraphs�

n,c)conn)[1] → H(Der(hoen))

where the first map is induced by �. We will see below that �̄ is injective with
one dimensional cokernel, in degree 0. For now, let us show the following
result.

Proposition 5.4 �̄ is a map of Lie algebras.

Proof Let homogeneous cocycles γ, ν ∈ fGC�
n,conn be given. By the action of

fGC�
n,conn on fGraphs�

n,c we obtain derivations Dγ , Dν ∈ Der(fGraphs�
n,c),

using the notation of Sect. 2. They satisfy
[
γ, ν

]
= D[γ,ν]. The images of

γ, ν in Def(hoen → fGraphs�
n,c)conn[1] have the form (−1)|γ | s Dγ ◦ f ,

(−1)|ν| s Dν ◦ f , where f : hoen → fGraphs�
n,c is the composition hoen →

en →֒ fGraphs�
n,c and s shall denote the degree shift operation, which is also

responsible for the extra sign. Since the map

φ : Der(hoen) → Def(hoen → fGraphs�
n,c)[1],

is a quasi-isomorphism of complexes, there are derivations Fγ , Fν, F[γ,ν] ∈
Der(hoen) such that

φ(Fγ ) := (−1)|γ | s f ◦ Fγ = (−1)|γ | s Dγ ◦ f + (coboundaries)

φ(Fν) := (−1)|ν| s f ◦ Fν = (−1)|ν| s Dν ◦ f + (coboundaries)

φ(F[γ,ν]) := (−1)|γ |+|ν| s f ◦ F[γ,ν] = (−1)|γ |+|ν| s D[γ,ν] ◦ f

+ (coboundaries).

Our goal is to show that
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[
Fγ , Fν

]
= F[γ,ν] + (coboundaries). (14)

Since φ is a quasi-isomorphism, it is sufficient to show the equation

φ(
[
Fγ , Fν

]
) := (−1)|γ |+|ν| s f ◦ (

[
Fγ , Fν

]
) = D[γ,ν] ◦ f + (coboundaries).

obtained by composing (14) with φ from the left and using the defining prop-
erty of F[γ,ν]. The bracket in the middle is the commutator (of S-module
morphisms). Compute

f ◦ Fγ ◦ Fν = (Dγ ◦ f + (coboundaries)) ◦ Fν

= Dγ ◦ f ◦ Fν + (coboundaries)

= Dγ ◦ (Dν ◦ f + (coboundaries))+ (coboundaries)

= Dγ ◦ Dν ◦ f + (coboundaries)

and similarly for γ and ν interchanged. Hence we obtain

φ(
[
Fγ , Fν

]
) = Dγ ◦ Dν ◦ f − (−1)|μ||ν|Dν ◦ Dγ ◦ f + (coboundaries)

=
[
Dγ , Dν

]
◦ f + (coboundaries)

= D[γ,ν] ◦ f + (coboundaries)

This was to be shown. ⊓⊔

5.2.1 Explicit form

Let us work out the explicit form of the map

ψ : fGC�
n,conn → Def(hoen → fGraphs�

n,c)conn[1].

First note that the differential on the right hand side splits according to eqns.
(5) and (7).

Now let γ ∈ fGC�
n,conn be a homogeneous element. In order to find its

image in Def(hoen → fGraphs�
n,c)conn, we have to compute the action of γ

on the two 2-vertex graphs to which the generators of en are sent to, see (8).
Since both these graphs contain no internal vertices, the only relevant part of
the action is

a �→ γ1 · a

where γ1 ∈ fGraphs�
n,c(1) is obtained from γ by marking vertex 1 as

external [cf. (41)] and the action · is defined in (40). Note also that γ1
(or any element in fGraphs�

n,c)conn) may be considered as an element of
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Def(hoen → fGraphs�
n,c)conn as well (sending the counit to γ1). Also, the

Lie bracket on the convolution dg Lie algebra Def(hoen → fGraphs�
n,c) with

such elements is given by a formula formally identical to (40). One may hence
check that γ is sent to

(−1)|γ | s
[
γ, α

]
= − s

[
α, γ

]
= − s(d∧γ1 + d[,]γ1) (15)

where s shall denote the degree shift operation, which is also responsible for
the extra sign on the left (since γ1 appears to the right of s).

5.3 The second description of the map

There are natural maps hoLien → hoen and en → Graphs�
n → Gra�

n . They
allow one to write a sequence of maps

0 → Def(hoen → en) → Def(hoen → Gra�
n )

→ Def(hoLien → Gra�
n ) → 0.

All these spaces can be written as (suitably degree shifted) symmetric powers
of their connected parts. In this section, we will only care about the connected
parts.

0 → Def(hoen → en)conn → Def(hoen → Gra�
n )conn →

Def(hoLien → Gra�
n )conn → 0. (16)

It is shown in Proposition 4.11 that

H(Def(hoen → Gra�
n )conn) ∼= K[−1].

The single non-trivial cohomology class is represented by a graph with one
edge and is easily checked to map to zero in H(Def(hoLien → Gra�

n )conn).
Assume now that the sequence (16) was exact. Then from the corresponding
long exact sequence in homology together with the previous remarks one could
conclude that

H•+1(Def(hoen → en)conn) = H•(Def(hoLien → Gra�
n )conn)⊕K[−1].

Hence, using that

H(Def(hoLien → Gra�
n )conn) ∼= H(GCn)

⊕

j≥1
j≡2n+1 mod 4

K[n − j]
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by Proposition 3.4, Theorem 1.3 would be proven. The problem is now that
(16) is not exact in the middle. However, one can cure that defect:

Proposition 5.5 There is a long exact sequence in homology

· · · → H k(Def(hoen → Gran)conn) → H k(Def(hoLien → Gran)conn) →
→ H k+1(Def(hoen → en)conn) → H k+1(Def(hoen → Gran)conn) → · · ·

(17)

For the proof one can apply the following Lemma, which the author learned
from Kazhdan.

Lemma 5.6 Let

0 → A → B → C → 0

be a sequence of complexes such that the composition of consecutive arrows

is 0. Assume that the total cohomology of the double complex D = A[−1] ⊕
B ⊕ C[1], vanishes. Then there is a long exact sequence in cohomology

· · · → H k(B) → H k(C) → H k+1(A) → H k+1(B) → · · ·

Proof (Proof (Sketch)) Compute the cohomology of the double complex D

using the associated spectral sequence. The E1-term is

0 → H(A) → H(B) → H(C) → 0.

The spectral sequence must collapse at the E3 page by degree reasons, and
hence E3 = 0 by the assumption in the Lemma, and the fact that spectral
sequences of bounded double complexes converge to the true cohomology.
Concretely, the nontrivial parts of the complex E2 are

0 → ker(H(B) → H(C))/Im(H(A) → H(B)) → 0

0 → ker(H(A) → H(B)) → coker(H(B) → H(C)) → 0.

From the vanishing of the cohomology of E3 the exactness of the long sequence
then follows. ⊓⊔

Let us now turn to the proof of Proposition 5.5. We would like to apply the
Lemma to the sequence (16). However, since the middle two arrows do not
compose to zero, we need to replace Def(hoen → en)conn in the sequence (16)
by a sub-complex. Let � ⊂ Def(hoen → en) the subcomplex of Appendix
B. It is shown in Proposition B.4 that the inclusion is a quasi-isomorphism.
Define �conn ⊂ � to be the connected part. It is easily checked that �conn →
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Def(hoen → en)conn is also a quasi-isomorphism, and hence so is �conn →
Def(hoen → Gra�

n )conn. We will apply the above lemma to the sequence

0 → �conn → Def(hoen → Gra�
n )conn → Def(hoLien → Gra�

n )conn → 0.

(18)
In other words, A = �conn, B = Def(hoen → Gra�

n )conn and C =
Def(hoLien → Gra�

n )conn. In order for the lemma to be applicable, we need
to check the following result, which is proven in Appendix D.

Lemma 5.7 The double complex defined by the sequence (18) is acyclic.

Let us believe Lemma 5.7 for now and use it to prove the first assertion of The-
orem 1.3. First we apply Lemma 5.6, which proves Proposition 5.5. Together
with the remarks made prior to this proposition, Proposition 5.3 follows. Using
the description of the cohomology of Def(hoen → en) provided by Proposi-
tion 5.2, together with the result of Proposition 3.4 then shows (1).

5.4 The two maps agree

The goal of this subsection is to show the following result:

Proposition 5.8 The two maps

H(fGCn,conn) → H(Def(hoen → en)conn)[−1]

that were defined in Sects. 5.2 and 5.3 are identical.

The first map came from the map

fGCn,conn → Def(hoen → fGraphsn,c)conn[−1]

given by the action of fGCn,conn on fGraphsn,c, which is worked out explicitly
in Appendix I.3. Let Ŵ ∈ fGCn,conn be a cocycle. Then its image is the cocyle

X = (d∧ + d[,])Ŵ1

cf. (15). To obtain an element of H(Def(hoen → en)conn) one uses Lemma
2.2 and the fact that the inclusion en → fGraphsn,c is a quasi-isomorphism.
Concretely, these facts guarantee that there is some X ′ ∈ Def(hoen →
fGraphsn,c)conn such that

X + d X ′ ∈ Def(hoen → en)conn ⊂ Def(hoen → fGraphsn)conn. (19)

The cocycle X + d X ′ is a representative in Def(hoen → en)conn of the image
of the class represented by Ŵ under the first map. It will be useful to know the
following lemma.
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Lemma 5.9 The element X ′ above may be chosen so that π(X ′) = Ŵ where

π : Def(hoen → fGraphsn,c)conn → Def(hoLien → Gran)conn

is the natural projection (induced by hoLien →֒ hoen and fGraphsn →
Gran).

We will postpone the proof and first use the Lemma to show Proposition
5.8.

Proof (Proof of Proposition 5.8.) Let us first unravel the definition of the
second map, as the connecting homomorphism in the long exact sequence of
Proposition 5.5. Given the cocycle Ŵ ∈ fGCn,conn as above we have to pick
some element Y such that

dY ∈ Def(hoen → en)conn

and such that π ′(Y ) = Ŵ where π ′ : Def(hoen → Gran)conn →
Def(hoLien−1 → Gran)conn is the restriction map. Then the image of the
cohomology class represented by Ŵ under the connecting homomorphism is
the class represented by dY in H(Def(hoen → en)conn).

Now, due to Lemma 5.9, we may pick Y = π ′′(X ′) where

π ′′ : Def(hoen → fGraphsn,c)conn → Def(hoen → Gran)conn

is the projection induced by fGraphsn,c → Gran . Indeed, for this Y , π ′(Y ) =
π ′(π ′′(X ′)) = π(X ′) = Ŵ and

dY = π ′′(d X ′) = π ′′(A − X) = π ′′(A) = A

where X is as above and

A = X + d X ′ ∈ Def(hoen → en)conn. (20)

Hence the image of (the class represented by) Ŵ under the second map is (the
class represented by) A, the same as the image under the first map. ⊓⊔

Now we need to prove Lemma 5.9. To do this, we first show the following
preliminary result.

Lemma 5.10 Let Ŵ and X be as above. Then there is an element X ′′ ∈
Def(hoLien → fGraphsn)conn such that

(1) d X ′′ + p(X) = 0 where

p : Def(hoen → fGraphsn,c)conn → Def(hoLien → fGraphsn)conn
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is the restriction.

(2) p′(X ′′) = Ŵ where

p′ : Def(hoLien → fGraphsn,c)conn → Def(hoLien → Gran)conn

is the projection.

Proof (Proof sketch.) Unravelling the definitions, one sees that

Def(hoLien → fGraphsn)
∼=

∏

N≥0

∏

M≥1

Gran(N+M)SN×SM [−(N+M−1)n]

(21)
and

fGCn
∼=

∏

N ′≥1

Gran(N ′)SN ′ [−(N ′ − 1)n]. (22)

In the graphical language, N above corresponds to the number of internal
vertices while M corresponds to the number of external vertices in graphs. We
will define a map of graded vector spaces

f : fGCn → Def(hoLien → fGraphsn,c).

To do that, we have to specify the composition with the projections πN ,M to
each factor in the direct product. We will set

πN ,M ◦ f =
{

ιN ,M ◦ πN+M for M ≥ 2

0 otherwise

where πN ′ is the projection to the N ′th factor in (22), and

ιN ,M : Gran(N + M)SN+M [−(N + M − 1)n]
→֒ Gran(N + M)SN×SM [−(N + M − 1)n]

is the inclusion. It is easy to see that f restricts to a map of the connected parts,
which we denote:

fconn : fGCn,conn → Def(hoLien → fGraphsn,c)conn.

Now we define

X ′′ := fconn(Ŵ).

The projection p′ in the statement of the Lemma projects onto the N = 0
factors in (21). Hence it is clear that p′(X ′′) = Ŵ.
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The other assertion of the lemma is more difficult to verify. Assume (without
loss of generality) that Ŵ is a linear combination of graphs with exactly N ′

vertices. Then

X ′′ = f (Ŵ) = Ŵ2 + Ŵ3 + · · · + ŴN ′

where Ŵ j := ιN ′− j, j (Ŵ), silently considered as elements of (21). The differ-
ential on Def(hoLien−1 → fGraphsn) has two parts, d = δ + d[,], where δ is
the part coming from the differential on fGraphsn and d[,] is the remainder.
We have

p(X) = d[,]Ŵ1. (23)

We leave for the reader to check that for all N , M

d[,] ◦ ιN ,M−1 + δ ◦ ιN−1,M = ιN ,M ◦ δ

where we (abusively) consider the ιi, j as taking values in Def(hoLien−1 →
fGraphsn,c).

6 Applying this equality to Ŵ and using that Ŵ is a cocycle, i.e.,
δŴ = 0, we obtain

d[,]Ŵ j + δŴ j+1 = 0.

Together with (23), this shows the first assertion of the Lemma. ⊓⊔

Proof (Proof of Lemma 5.9.) First we note that

H(Def(hoLien → fGraphsn,c)conn) ∼= H(Def(hoLien → en)conn) ∼= 0.

Here the first equality is due to Lemma 2.2 and Propositions 3.8 and 3.9
and the second equality is easily checked since Def(hoLien → en)conn is a
2-dimensional complex.

Now let Ŵ and X be as above and pick any X ′ satisfying (19) (but possibly
π(X ′) �= Ŵ). We will show Lemma 5.9 by constructing an element Z ∈
Def(hoen → fGraphsn)conn such that π(X ′ + d Z) = Ŵ. (Then replacing X ′

by X ′ + d Z the assertions of the Lemma are satisfied.)
Let X ′′, p and p′ be as in Lemma 5.10. The element p(X ′)− X ′′ is closed

since

dp(X ′)− d X ′′ = p(d X ′)− d X ′′ = p(A − X)+ d X ′′

= −p(X)− d X ′′ + p(A) = p(A)

6 It is not difficult, but lengthy to write down.
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where A is as in (20). But p(A) lives in the 2-dimensional complex
Def(hoLien → en)conn, and it is easily verified that p(A) �= 0 may only
happen if Ŵ contains the graph with one vertex, or the graph with two vertices
and one edge. Since the latter graph is the coboundary of the former, we may
assume that neither is contained in Ŵ and hence p(A) = 0. Hence there is some
Y ∈ Def(hoLien → fGraphsn,c)conn such that X ′′ − p(X ′) = dY . Now pick
any Z ∈ Def(hoen → fGraphsn,c)conn such that p(Z) = Y . Let us compute

π(X ′ + d Z) = p′ ◦ p(X ′ + d Z) = p′(p(X ′)+ dY ) = p′(X ′′) = Ŵ

where we used Lemma 5.10 twice. This shows Lemma 5.9. ⊓⊔

5.5 Proof of Theorem 1.3

In Sect. 5.3 we established Eq. (1), i.e., the first part of Theorem 1.3. It remains
to show the second assertion, i. e., that H(GCn) → H(Der(hoen)) is a map of
Lie algebras. We will in fact show the stronger assertion that H(fGC�

n,conn) →
H(Der(hoen)) is a map of Lie algebras. By Proposition 5.8 we may as well use
the first description of the map H(fGC�

n,conn) → H(Der(hoen)), introduced
in Sect. 5.2. But for this version the statement is the content of Proposition
5.4. Hence Theorem 1.3 has been shown. ⊓⊔

Remark 5.11 The proof of Theorem 1.3 we have given here is not the shortest
possible. One may shorten it by using only the first description of the map
(from Sect. 5.2). However, the second description of the map will still be
needed below for some other results.

6 The Grothendieck–Teichmüller Lie algebra

In this section we collect some facts about the Grothendieck–Teichmüller Lie
algebra.

Notation Here and in the following we adopt the convention that, if we omit the

subscript n in GCn , Graphsn etc., n = 2 is implied. In particular GC := GC2.

6.1 The standard definition

Let F2 = K〈〈X, Y 〉〉 be the completed free associative algebra in generators
X, Y . There is a coproduct � on F2 by declaring X, Y to be primitive, i.e.,
�X = X ⊗ 1+ 1⊗ X , �Y = Y ⊗ 1+ 1⊗ Y . It is part of a topological Hopf
algebra structure on F2. We call an element � ∈ F2 group-like if �� = �⊗�.

123



M. Kontsevich’s graph complex 709

Equivalently, φ is group-like if � = exp(φ) with φ ∈ F̂Lie(X, Y ) ⊂ F2 being
an element of the completed free Lie algebra generated by X and Y .

Let tn (n = 1, 2, 3, . . . ) be the Drinfeld Kohno Lie algebra. It is generated
by symbols ti j = t j i , 1 ≤ i, j ≤ n, i �= j , with relations

[
ti j , tik + tk j

]
= 0 for

#{i, j, k} = 3 and
[
ti j , tkl

]
= 0 for #{i, j, k, l} = 4. Consider the following

set of equations for group-like elements � ∈ F2, depending on some yet
unspecified parameter μ ∈ K.

�(t12, t23 + t24)�(t13 + t23, t34)

= �(t23, t34)�(t12 + t13, t24 + t34)�(t12, t23) (24)

eμ(t13+t23)/2 = �(t13, t12)e
μt13/2�(t13, t23)

−1eμt23/2�(t12, t23) (25)

�(x, y) = �(y, x)−1. (26)

Definition 6.1 The group-like solutions � ∈ F2 of (24), (25), (26) are called
Drinfeld associators for μ �= 0 and elements of the Grothendieck–Teichmüller

group GRT1 for μ = 0.

Furusho has shown the following remarkable Theorem.

Theorem 6.2 (Furusho [19]) Any group-like solution � ∈ F2 of (24) auto-

matically satisfies (25) and (26) for μ = ±
√

24c2(�), where c2(�) is the

coeffcient of XY in �.

We reprove the μ = 0 case of this result in Appendix E.

Remark 6.3 It also follows from (24) that � contains no terms linear in
X, Y , i.e.,

�(X, Y ) = 1+ c2(�)(XY − Y X)+ (higher orders).

The group structure on the Grothendieck–Teichmüller group GRT1 is as
follows.

(�1 ·�2)(X, Y ) = �1(X, Y )�2(X, �1(X, Y )−1Y�1(X, Y )).

We will actually be mostly interested in its Lie algebra, the Grothendieck–
Teichmüller Lie algebra grt1. It is given by a Lie series φ ∈ F̂Lie(X, Y ) such
that the following hold.

φ(t12, t23 + t24)+ φ(t13 + t23, t34)

= φ(t23, t34)+ φ(t12 + t13, t24 + t34)+ φ(t12, t23) (27)

φ(X, Y )+ φ(Y,−X − Y )+ φ(−X − Y, X) = 0 (28)

φ(X, Y )+ φ(Y, X) = 0 (29)
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Again, by Furusho’s result, it suffices to require (27) and that φ contains no
quadratic term (i.e., no [X, Y ]). One may embed grt1 into t3 as a sub-vector
space by setting X = t12 and Y = t23.

It is not hard to see that the Lie algebra grt1 carries a complete grading,
inherited from the complete grading on F̂Lie(X, Y ) obtained by assigning the
generators X and Y degree +1. One may define the Lie algebra

grt := K ⋉ grt1

where elements λ of the abelian Lie algebra K act on homogeneous elements
x ∈ grt1 of degree r by multiplictaion by r , i. e., [λ, x] = r x .

6.2 Definition as “Harrison” cohomology of t

Since the defining relations of tn are homogeneous with respect to the number
of ti j ’s occuring, the Lie algebras tn are naturally graded by assigning degree
one to the generators ti j . Let us call the resulting degree of homogeneous
elements the “t-degree”. Distinguish the t-grading from the cohomological
grading, with respect to which we consider tn to be concentrated in degree 0.

Let t̂n be the degree completion of tn with respect to the t-degree. The spaces
t̂n in fact form an operad t̂ of Lie algebras. Hence the Chevalley complexes
C(t̂) form an operad of commutative coalgebras, and in particular an operad
of vector spaces. There is a map Com → C(t̂) of operads of vector spaces,
sending the generator of Com to 1 ∈ C(t̂2). Hence one also obtains a map
Com∞ → C(t̂), and can consider the deformation complex

Def(Com∞ → C(t̂)) ∼=
∏

N≥1

HomSN
(Com∨(N ), S(t̂N [1]))

where S(· · · ) denotes the symmetric product space. The differential on
Def(Com∞ → C(t̂)) can be written as dH +dC E , where dC E comes from the
differential on C(t̂) (the Chevalley-Eilenberg differential). The remainder of
the differential we denote by dH . This part formally resembles the Harrison
differential. The deformation complex above contains a subcomplex which we
denote (abusing notation) by

Def(Com∞ → t̂[1]) :=
∏

N≥2

HomSN
(Com∨(N ), t̂N [1])

as in Sect. 4.2.2. This complex is endowed with the differential dH . Up to
differences in grading and completion, the complex Def(Com∞ → t̂[1]) has
been defined by V. Drinfeld, see [16], above Proposition 5.9.
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Lemma 6.4 [Drinfeld [16]] H1(Def(Com∞ → t̂[1])) ∼= grt1.

Proof By degree reasons, H1(Def(Com∞ → t̂[1])) is the space of closed
elements in

HomS3(Com∨(3), t̂3[1])

modulo exact elements. From the fact that t2 is one-dimensional, one can show
that there are no exact elements. Hence one needs to compute closed elements
in t̂3 with the correct symmetry properties. However, one checks that the two
independent unshuffle relations for the generators of Com∨(3) are exactly
equations (28) and (29), and closedness is exactly (27). ⊓⊔

The cohomology of Def(Com∞ → t̂[1])) in degrees smaller than one is
trivial to determine. The cohomology in degrees > 1 on the other hand is
unknown. In particular, it is a hard and long standing conjecture that the degree
2 cohomology vanishes.

Lemma 6.5 H<0(Def(Com∞ → t̂[1])) = 0 and H0(Def(Com∞ →
t̂[1])) ∼= K.

Proof The complex Def(Com∞ → t̂[1]) has no components in degrees < 0,
and is one dimensional in degree 0, spanned by a closed element. ⊓⊔

In [44] Ševera and the author introduced L∞ algebras ICG(n), forming an
operad of L∞-algebras, such that H(ICG) = t̂. See also Sect. 3.2 and in par-
ticular Proposition 3.11 of this paper. We will use here the (quasi-isomorphic)
version with tadpoles ICG� for technical reasons.7 There is again a map
Com → C(ICG�) by sending the generator to 1 ∈ C(ICG�(2)). We con-
sider the deformation complex

Def(Com∞ → C(ICG�)) ∼= Def(Com∞ → Graphs�

2 ).

Again, this complex contains a subcomplex which we denote (abusing
notation)

Def(Com∞ → ICG�[1]) :=
∏

N≥1

HomSN
(Com∨(N ), ICG�(N )[1]). (30)

Proposition 6.6 H(Def(Com∞ → ICG�[1])) ∼= H(Def(Com∞ → t̂[1])).
In particular H1(Def(Com∞ → ICG�[1])) ∼= grt.

7 One could proceed without the tadpoles, but then some results would attain a less elegant
form.
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Proof Let us first recall some generalities on filtrations and spectral sequences.
Suppose A is some complex with a complete descending filtration. Then the
associated spectral sequence may or may not converge to the cohomology
H(A). However, if the associated graded of A is acyclic, then it does converge,
i. e., H(A) = 0. Now let f : A → B be a map of complexes, both equipped
with complete descending filtrations (respected by f ). Then if the associated
graded map gr f is a quasi-isomorphism, so is f . To see this, simply apply the
previous statement to the mapping cone. Now let us turn to the case at hand.
We recall from [44] that there is a sub-operad of L∞ algebras TCG� ⊂ ICG�

obtained by truncation, that comes equipped with quasi-isomorphisms

t̂ և TCG� →֒ ICG�. (31)

Hence we obtain maps

Def(Com∞ → t̂[1]) ← Def(Com∞ → TCG�[1])
→ Def(Com∞ → ICG�[1]) (32)

that we claim are quasi-isomorphisms. Here the middle complex is defined
analogously to the right hand one, by replacing all occurrences of ICG�

by TCG�. All three complexes come equipped with a complete descending
filtration

F pDef(Com∞ → g[1]) =
∏

N≥p

HomSN
(Com∨(N ), g(N )[1])

where g is either t̂, TCG� or ICG�. The graded versions of the morphisms
in (32) are all quasi-isomorphisms since the morphisms in (31) are. By the
generalities recalled at the beginning of this proof, the morphisms in (32) are
hence quasi-isomorphisms. The Lemma hence follows from Lemma 6.4. ⊓⊔

An element of Def(Com∞ → ICG�[1]) is given by a collection of maps
in

HomSn (Com∨(n), ICG�(n)[1]).

Such maps can be depicted as internally connected graphs in Graphs2(n),
satisfying certain symmetry conditions under interchange of their external
vertices. More precisely, they are required to vanish on shuffles: For any k, l ≥
1, k + l = n, one requires

∑

σ∈ush(k,l)

sgn(σ )σ · Ŵ = 0.
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Fig. 8 Some graphs in the
complex C ⊂
Def(Com∞ → ICG�[1])

Here the sum is over (k, l)-unshuffle permutations, and a permutation acts
on graphs Ŵ by interchange of the labels on the external vertices. One can
define a subcomplex C ⊂ Def(Com∞ → ICG�[1]) consisting of graphs with
one external vertex and exactly one edge connecting to them. Some example
graphs in C are shown in Fig. 8.

Proposition 6.7 The inclusion C →֒ Def(Com∞ → ICG�[1]) is a quasi-

isomorphism. Hence H1(C) ∼= grt1.

Proof It follows along the lines of the more general proof of Proposition 4.9.
⊓⊔

The same proof also shows another statement.

Proposition 6.8 The inclusion C →֒ Def(Com∞ → Graphs�

2 ) is a quasi-

isomorphism. Hence

H j (Def(Com∞ → Graphs�

2 )) ∼=

⎧
⎪⎨
⎪⎩

grt1 j = 1

K j = 0

0 j < 0

.

Proof It is a copy of the proof of the more general Proposition 4.6. ⊓⊔

6.3 Tamarkin’s grt1-action (up to homotopy) on hoe2 and on Tpoly

6.3.1 The action on hoe2

Tamarkin [39] showed that there is an action (up to homotopy) of grt1 on the
homotopy Gerstenhaber operad hoe2 by derivations. Let us recall the construc-
tion of this action.

Let PaP(N ) be the category whose objects are the parenthesized per-
mutations of symbols 1, . . . , n (for example (13)(5(24)) is an object of
PaP(5)) and with exactly one morphism between any pair of objects. Let
PaCD(N ) := U tN × PaP(N ) be the product of categories, where the com-
pleted universal enveloping algebra U tN of tN is considered as a category with
one object.8 The PaCD(N ) assemble to form an operad of categories enriched

8 PaCD stands for “parenthesized chord diagrams”, see [6].
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over (complete) Hopf algebras, called PaCD. The Grothendieck–Teichmüller
group GRT acts faithfully on PaCD. In particular, one has an action of the
Lie algebra grt1 on PaCD. See [6] for details. Furthermore, there is a chain of
quasi-isomorphisms of operads

CN PaCD → BU t ← e2 ← hoe2.

Here “N ” denotes the nerve and “C” the chains functor and BU t is the bar
construction of U t. The left arrow is obtained from the map PaCD → U t

sending PaP to the category with one object and one morphism. Since hoe2 is
cofibrant, the action of grt1 on CN PaCD can be transferred to an action (up
to homotopy) on hoe2. One hence obtains an L∞ morphism

grt1 → Der(hoe2).

Tamarkin proved the following theorem.

Theorem 6.9 (Tamarkin [39]) The above morphism grt1 → Der(hoe2) is

homotopy injective, i. e., the induced map grt1 → H0(Der(hoe2)) is injective.

In fact, Tamarkin proved this theorem by showing the following lemma.

Lemma 6.10 The composition

grt1 → H0(Der(hoe2))
∼→ H1(Def(hoe2 → C(t)))

→ H1(Def(Com∞ → C(t))) ∼= grt1

is the identity. Here the first arrow is induced by the grt1 action on hoe2 and

the third arrow is the restriction.

A proof of the Lemma and hence of Theorem 6.9 is sketched in Appendix
J.3.

6.3.2 The action on Tpoly

Let next Tpoly = Ŵ(Rd; ∧T Rd) be the space of polyvector fields on Rd . It
is naturally a Gerstenhaber algebra, hence we have maps hoe2 → e2 →
End(Tpoly), where End(Tpoly) is the endomorphism operad. From the grt1-
action on the left one hence obtains a map

A : grt1 → Def(hoe2 → End(Tpoly))[1].

By rigidity of Tpoly, the image of this map will be exact, cf. Proposition 4.11.
So, for any φ ∈ grt1 there will be some h ∈ Der(hoe2 → End(Tpoly)) such
that A(φ) = dh.
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Remark 6.11 The homotopy h encodes an infinitesimal hoe2 map between the
two hoe2 structures on Tpoly related by φ.

Note that any derivation of hoe2 that sends the Lie bracket to zero must
act trivially on hoLie2 ⊂ hoe2. Indeed, the N -ary hoLie2 generator μN must
be sent to an element of degree 3 − 2N in hoen , and the only such elements
are multiples of μN . But by compatibility with the differentials it follows
inductively that all μN must be mapped to 0. In our case, we can in particular
conclude that φ acts trivially on the hoLie2 part of the hoe2-structure on Tpoly,
i. e., that it is mapped to zero under the restriction map

Def(hoe2 → End(Tpoly)) → Def(hoLie2 → End(Tpoly)).

It hence follows that dh′ = 0 where h′ ∈ Def(hoLie2 → End(Tpoly)) is the
image of h under the above map. In other words, h′ encodes a hoLie2 derivation
of Tpoly, or equivalently an L∞ derivation of Tpoly[1]. One can check that h′ is
determined uniquely up to homotopy by φ, again using rigidity of Tpoly. This
action (up to homotopy) of grt1 on Tpoly by hoLie2-derivations was discovered
by Tamarkin to the knowledge of the author. Degree 0 graph cocycles in GC2
can be seen as universal (independent of d) hoLie2 derivations of Tpoly. So the
map grt1 → H0(GC2) central to this paper is a universal version of Tamarkin’s
action of grt1 on Tpoly[1]. The universal version of Tamarkin’s construction is
described in more detail in Appendix J.1.

6.4 The map from the graph cohomology to grt1

By the action of the graph complex GC on the operads Graphs and Graphs�

described in Appendix I we obtain a map of complexes

GC → Def(Com∞ → Graphs�)[1]. (33)

In particular, one obtains a map

H0(GC) → H1(Def(Com∞ → Graphs�)) ∼= grt1

of vector spaces between the zeroth graph cohomology and grt1. Our goal in
this section and the next is to show that this map is an isomorphism of Lie
algebras.
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6.4.1 Factoring through C

By Proposition 6.8 we know that the map of complexes (33) must factor through
the subcomplex C , up to homotopy. In fact, the corresponding map of com-
plexes GC → C has a combinatorially very simple form.

We define the map of complexes

Here the right hand side deserves some explanation. Both the two-vertex graph
depicted and Ŵ can be seen as elements of the operad fGraphs, and the com-
position ◦2 is the composition in fGraphs. This yields, a priori, an element in
fGraphs(1). However, it is easy to check that the element in fact lies in the
subcomplex

C[1] ⊂ Graphs(1) ⊂ fGraphs(1).

It is clear that the map F respects the differentials since the operadic compo-
sition does.

Remark 6.12 By writing out the definitions explicitly, one can check that F

measures the failure of the map

GC → Graphs(1)

γ �→ γ1

[cf. (41)] to commute with the differentials. I.e., for any graph cochain ν ∈ GC
one has the formula

F(ν) = δν1 − (δν)1. (34)

This could also be used as an alternative definition of F .

Proposition 6.13 Denote the maps on cohomology induced by F and G again

by F, G. Then the following diagram commutes.
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Proof Let γ ∈ GC be a graph cocycle. Its image in Def(G∞ → Graphs) is
obtained by acting with γ on the (Maurer–Cartan) element

Hence one needs to follow the construction of the action as in Appendix I.3.
Note that the formula slightly simplifies since μ does not contain internal
vertices. From γ one obtains the element γ1 ∈ Graphs(1) by marking the
first vertex as external. We can consider γ1 also as an element of Def(G∞ →
Graphs). The action of γ on μ is the same as the Lie bracket (in Def(Com∞ →
Graphs)) of γ1 and μ,

[
μ, γ1

]
. Note that the differential on Def(Com∞ →

Graphs) has the form δ + [μ, ·], where δ comes from the differential on
Graphs. Hence the element

[
μ, γ1

]
represents the same cohomology class as

δγ1. But by (34) and closedness of γ , we see that δγ1 = F(γ ). This shows the
proposition. ⊓⊔

7 Der(hoe2) and grt1

In this section we will investigate more precisely the relation between grt1
and Der(hoe2) and at the end show that H0(Der(hoe2)) ∼= grt1 ⊕K as vector
spaces. Theorem 1.2 then easily follows in the next section, along with Theo-
rem 1.1 as a Corollary by Theorem 1.3 which has been proven in the preceding
sections. We will begin by showing some auxiliary results.

As a corollary to Proposition 4.10, one obtains the following Lemma.

Lemma 7.1

H j (gr pDef(hoe2 → e2)conn) ∼= H j (gr pDef(hoe2 → t̂[1]))

where gr denotes the associated graded with respect to the filtration introduced

in Sect. 4.1.

Proof By Lemma 2.2 and Propositions 3.8 and 3.9, gr pDef(hoe2 → e2)conn

is quasi-isomorphic to gr pDef(hoe2 → Graphs�

2 )conn. Note in particular that
Lemma 2.2 is applicable in this context since we may understand

∏

p

gr pDef(hoe2 → e2) ∼= (Def(hoe2 → e2), d∧)

as a deformation complex

Def(hoe2
f̃−→ e2)
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Fig. 9 Picture of the
cohomology
H j (gr pDef(hoe2 →
e2)conn), see Proposition 7.2
and Remark 7.5. The entries
beyond the dashed line are 0.
The entries above and
including the question marks
are unknown to the author. It
is a well-known conjecture
that the leftmost ? shown is 0
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where f̃ is the composition of the canonical map hoe2 → e2 with the endo-
morphism of e2 that sends the product operation to itself and the bracket to
zero. See also Remark 4.7.

By (the first part of) Proposition 4.8 the complex gr pDef(hoe2 →
Graphs�

2 )conn is quasi-isomorphic to (fCconn, δ). By Proposition 4.9 in turn
H(fCconn, δ) is isomorphic to H(Def(hoe2 → ICG�

2 [1])conn, δ+ d∧), which
is isomorphic to H(Def(hoe2 → t̂[1])conn) by Proposition 4.10. Summarizing,
we have the following zig-zag of quasi-isomorphisms of complexes.

gr pDef(hoe2 → e2)conn→ gr pDef(hoe2 → Graphs�

2 )conn ← gr pfCconn→
→ gr pDef(hoe2 → ICG�

2 [1])conn ← gr pDef(hoe2 → t̂[1])conn

⊓⊔

Proposition 7.2

H j (gr pDef(hoe2 → e2)conn) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for j < 2p − 1or j ≤ −1

K for j = p = 0

grt1 for j = 1, p = 0

K for j = p = 1

0 for j = 2, p = 1

See Fig. 9 for an illustration of the situation.

For the proof, recall the following fact from [3].
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Proposition 7.3 (Special case of Theorem 2.1 in [3]) Let f (X, Y ) ∈
FLie(X, Y ) be an element of the free Lie algebra in two generators such that

f (Y, Z)− f (X+Y, Z)+ f (X, Y+Z)− f (X, Y ) = 0 ∈ FLie(X, Y, Z). (35)

Then f (X, Y ) ∝ [X, Y ]. In particular, if in addition

f (X, Y ) = f (Y, X) (36)

then f (X, Y ) = 0.

In fact, this is one instance of a much more general (and simpler) combinatorial
principle, see [43].

(Proof of Proposition 7.2.) We use Lemma 7.1. An element of gr pDef(hoe2
→ t̂[1])conn which is in the N th factor in the direct product decomposition (3)
has cohomological degree

j = N + p − 2.

Since N ≥ p + 1 it follows that the cohomology vanishes for j < 2p − 1.
Since the complex has no components of cohomological degree j ≤ −1, the
first line of the case distinction has been shown. The second and third line
are Lemmas 6.5 and 6.4. The part of gr pDef(hoe2 → t̂[1])conn of degrees
j = p = 1 is one dimensional. The generator corresponds to the graph with
two vertices, each in their own cluster, and one edge. It is a cocycle, hence
the fourth line follows. For the final assertion let us again use the graphical
language from Appendix C. Suppose an element x of cohomological degree
j = 2 and additional degree p = 1 is given. Then, by the above formula, it has
N = 3 external vertices. They come in two clusters, one of size one and one
of size two. We claim that if x is closed, then x = 0. Note that the differential
of x consists of two parts, one with two clusters of size two each, and one
with one cluster of size one and one of size three. We claim that even if only
the latter part vanishes, then x = 0. Concretely, x is defined by an element
of T ∈ t̂3, symmetric under interchange of two indices, say of 1 and 2. It is
well known that t3

∼= FLie(t13, t23)⊕Kt12. By the connectedness requirement,
the coefficient of t12 in T must be zero. Hence T describes an element of the
(completed) free Lie algebra in two symbols. The closedness condition for
x and the symmetry requirement translate into the conditions (35) and (36)
above. Hence by Proposition 7.3 x = 0. ⊓⊔

Corollary 7.4

H1(Def(hoe2 → e2)conn) ∼= grt1 ⊕K
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and

H0(Def(hoe2 → e2)conn) ∼= K.

Furthermore H<0(Def(hoe2 → e2)conn) = 0.

Proof We consider the spectral sequence on the above complexes associated to
the filtration of Sect. 4.1. It converges to cohomology by (for example) Lemma
4.5. A part of the E1 term is computed in Proposition 7.2. Consider the piece
grt1, living in degrees p = 0, j = 1 in the notation of that Proposition. Higher
differentials in the spectral sequence must send it to the subspace of degrees
p ≥ 1, j = 2. But by Proposition 7.2 all these vanish. The same reasoning
works a fortiori for the summand K, living in degrees p = 1, j = 1. The
summand K, living in degrees p = 0, j = 0 might potentially be mapped to
the summand K, living in degrees p = 1, j = 1 by the differential on E1.
However, looking at the explicit representative, which corresponds to a graph
with two vertices in one cluster connected by an edge, one sees that this is not
so. Finally, there is no cohomology in negative degrees even at the E1 stage
by Proposition 7.2, hence the last assertion follows. ⊓⊔
Remark 7.5 It was pointed out to the author by V. Turchin that using the above
methods one can also show that

H2(gr3Def(hoe2 → e2)conn) = 0.

8 The proof of Theorems 1.1 and 1.2

In this section we show that grt1
∼= H0(GC) as Lie algebras.9 We saw in

Theorem 1.3 and in Corollary 7.4 that

H0(GC)⊕K ∼= H0(Der(hoe2)) ∼= H1(Def(hoe2 → e2))

∼= H1(Def(hoe2 → e2)conn) ∼= grt1 ⊕K.

On both sides the class spanning K corresponds to a graph with two vertices
and the other summand to classes represented by sums of graphs with more
than 2 vertices. Hence we may identify

H0(GC) ∼= grt1

as vector spaces. It remains to show that the isomorphism obtained is a map of
Lie algebras. The inclusion grt1 → H0(Der(hoe2)) is a map of Lie algebras

9 We adopt the convention that, if we omit the subscript n in GCn , Graphsn etc., n = 2 is
implied. In particular GC := GC2.
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by Tamarkin’s construction, and the inclusion H0(GC) → H0(Der(hoe2)) is
a map of Lie algebras by Theorem 1.3, and hence the first part of Theorem 1.1
is shown. Next, recall from Corollary 7.4 that H0(Def(hoe2 → e2)) is one
dimensional and that H<0(Def(hoe2 → e2)) = 0. Comparing with Theorem
1.3, the final assertion of Theorem 1.1

Let us next turn to Theorem 1.2, which is almost shown by the above argu-
ments. The only thing that remains to be verified is that the Lie bracket [in
H0(Der(hoe2))] of grt1 elements with the additional class is as stated in the
Theorem. The proof is similar to the proof of Proposition 5.4. The additional
class corresponds to the derivation of e2 given by a relative scaling of bracket
and product. Let ξ be the derivation of e2 that sends the product operation to
zero and the bracket operation to itself. It acts by multiplication with minus
the cohomological degree. Let � be the derivation of hoe2 that acts by multi-
plication with the grading on hoe2 introduced in Sect. 4.1. It is straightforward
to check that f ◦ � = ξ ◦ f where f : hoe2 → e2 is the projection. Let
ψ ∈ grt1 be a homogeneous element of degree r and let � ∈ Der(hoe2)) be a
representative of the corresponding cohomology class in Der(hoe2)). We need
to show that

� ◦� −� ◦� = r� + (exact terms).

Since f is a quasi-isomorphism and by Lemma 2.2 it suffices to show that

f ◦� ◦� − f ◦� ◦� = r f ◦�. (37)

Let x be a generator of hoe2 of cohomological degree d and of additional
degree k. Note that automatically the arity of x is fixed to be

N = 2− d − k.

Apply both sides of (37) to x . We need to show that

f ◦� ◦�(x)− f ◦� ◦�(x) = r f ◦�(x).

The left hand side evaluates to

ξ ◦ f ◦�(x)− f ◦� ◦�(x) = (−d − k) f ◦�(x) = (N − 2) f ◦�(x).

Noting that f ◦�(x) = 0 unless r = N − 2 we are done. ⊓⊔
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Fig. 10 Some wheel graphs. The graph cocyle corresponding to a (conjectural) generator σ2 j+1
of grt1 contains such a wheel with 2 j + 1 spokes

9 Explicit form of the (conjectural) generators

It is well known that grt1 contains a series of nontrivial elements σ3, σ5, . . . ,
such that σ2 j+1 is a Lie series in X , Y starting with a multiple of the term ad2 j

X Y .
The Deligne–Drinfeld conjecture states that these elements freely generate
grt1. In fact, it has recently been shown in [8] that these elements generate a
free Lie subalgebra of grt1. However, it is still unclear whether this subalgebra
is in fact the whole of grt1. In this section we will investigate how the graph
cohomology classes corresponding to these generators look. The main result
is the following.

Proposition 9.1 Under the map of Theorem 1.1, the element σ2 j+1 ∈ grt1
corresponds to a graph cohomology class, all of whose representatives have

a nonvanishing coefficient in front of the wheel graph with 2 j + 1 spokes,

see Fig. 10. Moreover, the coefficient of that wheel graph equals minus the

coefficient of the term ad
2 j
X Y in the Lie series σ2 j+1(X, Y ), if for the wheel

graph one uses the following ordering of edges to fix the sign

Before we prove the proposition let us recollect the explicit form of the iso-
morphism H0(GC2) → grt1, which is scattered over the preceding sections.
Let a graph cocycle γ ∈ GC2 be given. We want to find a way to read off the
corresponding grt1-element from γ . Remember that γ is a linear combination
of graphs with labeled vertices, invariant under permutations of the labels.
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Fig. 11 Illustration of the
algorithm mapping a graph
cohomology class to a
grt-element. Prefactors are
omitted. The graphs depicted
are (in this order) Ŵ, Ŵ1, Ŵ′2,
Ŵ2 = T and the Lie tree

→ →

→ →

→ [Y, [Y, X ]] − [X, [X, Y ]]

Algorithm 1:

(1) We assume that γ is 1-vertex irreducible, which is possible by Proposition
F.2.

(2) For each graph in γ , mark the vertex 1 as “external”. This gives a (linear
combination of) graph(s) γ1 ∈ Graphs(1).

(3) Split the vertex 1 in γ1 into two vertices, redistributing the incoming edges
in all possible ways, so that both vertices are hit by at least one edge. Call
this linear combination of graphs γ ′2 ∈ ICG2(2).

(4) γ ′2 is closed in ICG2 and has no one-edge component, hence it is the
coboundary of some element γ2. We choose γ2 to be symmetric under
interchange of the external vertices 1 and 2.

(5) Forget the non-internal-trivalent tree part of γ2 to obtain T2.
(6) For each tree t occuring in T2 construct a Lie word in (formal) variables

X, Y as follows. For each edge incident to vertex 1, cut it and make it the
“root” edge. The resulting (internal) tree is a binary tree with leafs labelled
by 1 or 2. It can be seen as a Lie tree, and one gets a Lie word φ1(X, Y ) by
replacing each 1 by X and 2 by Y . Set φ(X, Y ) = φ1(X, Y )− φ1(Y, X).
Summing over all such Lie words one gets a linear combination of Lie
words corresponding to γ . Let us call it again φγ (X, Y ) ∈ FLie(X, Y ).

(7) φγ is the desired grt1-element.

A graphical illustration of this algorithm for the simplest case of a three-
wheel (corresponding to σ3 ∈ grt) is given in Fig. 11.

Proposition 9.2 The above Algorithm 1 produces the correct result, i. e., φγ

is indeed the grt1-element corresponding to γ under the map of Theorem 1.1.

Proof We proceed as in the proof of Theorem 1.1 in the previous section. There
we saw that the image of γ in Def(Com∞ → Graphs2) is the element dHγ1 =
γ ′2. It can be seen as an element of Graphs2, symmetric under interchange of
the external vertices. It furthermore consists entirely of graphs with only one
internally connected component by 1-vertex-irreducibility of γ . Now let us
compute the element of grt1, corresponding to the cohomology class of dHγ1.
First we pick a different representative, which will be dHγ2. The latter can
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...
...

. . .

Fig. 12 Three graphs occuring in the proof of Proposition 9.1

be seen as a cocycle in ICG(3) satisfying some symmetry property. But any
cocycle in ICG(3) represents an element of t3, which can be obtained by
restricting to the part consisting of trivalent internal trees. From such a tree
one can recover the grt1-element as described in Appendix H. ⊓⊔

Now let us turn to the proof of Proposition 9.1. All we need to know about
σ2 j+1 is that it contains a term

ad2 j
X (Y )

with non-trivial coefficient. We need to trace through the above algorithm, and
see that the wheel graph must be present in γ in order to produce that term.

Proof (Proof of Proposition 9.1.) In order to produce a term ad2 j
X (Y ) at the

end, the T2 in the algorithm, and hence also the γ2, has to contain a graph
as depicted in Fig. 12 (left). But this means that in γ ′2 there is a term of the
form depicted in Fig. 12 (middle). But such a term can only be produced if γ1
contains a term like that in Fig. 12 (right). But this means that γ has to contain
a wheel graph.

Next, let us track the coefficients. Suppose the wheel graph appears in the
graph cocyle with coefficient 1. Recall that by our conventions this means that
the corresponding linear combination of numbered graphs is the sum over all
(2 j + 2)! numberings, divided by the order of the symmetry group 2(2 j + 1).
Hence, the graph on the right of Fig. 12 appears with coefficient 1 as well. The
graph in the middle of Fig. 12 can be produced from the splitting of vertex 1 in
2 j+1 ways, but at the same time the symmetry group is only of order 2. Hence
the coefficient in front of this graph is 1 as well, as is the coefficient of the
graph on the left hand side. Finally we have to create a Lie tree by detaching
an edge from one of the vertices. Here, we have to pick the lower valence
vertex to obtain the desired Lie word. There are two edges to detach yielding
the same contribution. However, together with the 1

2 from the symmetry factor
we obtain one contribution corresponding to a Lie tree of the form
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which contributes to φ1(Y, X) If we map this graph into t3, we obtain ad2 j
X (Y ).

See the example in Appendix H for the sign convention used when identifying
a tree with a Lie word. ⊓⊔

For reference, let us also give an explicit algorithm for the opposite map
grt1 → H0(GC2). Let φ ∈ grt1. We can assume without loss of generality
that φ is homogeneous of degree n with respect to the grading on grt1. I. e.,
φ = φ(X, Y ) can be seen as a Lie expression in formal variables X, Y , with
X, Y occurring n times. Consider the complex

D := Def(hoLie2 → C(t))

where C(t) is the Chevalley complex of the Drinfeld-Kohno (operad of) Lie
algebra(s) t, with trivial coefficients.

Remark 9.3 Since C(t) is quasi-isomorphic to e2 (see [41]), the complex D

has no cohomology in degree zero or lower already by degree reasons. In fact
it is acyclic, as can be seen from Proposition B.4 in Appendix B.

We have the following algorithm, in which we ignore the overall sign:

Algorithm 2:

(1) Symmetrize (and shift in degree) the element φ(t12, t23)∧t12∧t23 ∈ C(t3)

so as to obtain an element T3 ∈ D. It is a cocycle (to be shown below).
(2) Find an element U ∈ D with coboundary T3. More concretey, split

U = U3 + U4 + · · · + Un+1 according to the grading on D by arity in t

(i.e., by “number of external vertices” if one thinks in terms of graphs).
Then dC EU3 = T3, d[,]U3 = −dC EU4 etc. where dC E is the part of the
differential on D coming from the Chevalley-Eilenberg differential on
C(t) and dC E + d[,] is the full differential.

(3) By degree reasons, Un+1 ∈ C(t)Sn+1[−2n] ⊂ D is a linear combination
of wedge products in the generators of tn+1 (i.e., the ti j ’s). Replacing each
ti j by an edge between vertices i and j one obtains a linear combination
of graphs γ ′.
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Fig. 13 Illustration of
Algorithm 2, mapping the
grt-element σ3 to a graph
cohomology class.
Prefactors are omitted. The
graphs depict (in this order)
T3, U3, d[,]U3, U4 = γ . It is
explained in Appendix H
how to depict elements of
C(t) as graphs

→

→ +

→

(4) Drop all graphs in γ ′ containing vertices of valence smaller than three.
This gives some element γ ∈ GC2, the result. It is closed since d[,]Un+1 =
0 by construction.

A graphical illustration of this Algorithm for φ = σ3 can be found in
Fig. 13.

To make the algorithm work, the following reesult has to be shown.

Lemma 9.4 The element T3 constructed in the first step is indeed a cocycle.

Proof First let us show that T3 is closed under the part dC E of the differential.
Concretely, one has

T3 ∝ φ(t12, t23) ∧ t12 ∧ t23 + φ(t23, t31) ∧ t23 ∧ t31 + φ(t31, t12) ∧ t31 ∧ t12

and hence

dC E T3 ∝ −φ(t12, t23) ∧ [t12, t23]+ (cycl.)

+ [φ(t12, t23), t12] ∧ t23 − [φ(t12, t23), t23] ∧ t12 + (cycl.)

= 0+ ([φ(t12, t23), t12]− [φ(t23, t31), t31]) ∧ t23 + (cycl.)

= 0.

Here the term in the first line on the right is zero because of the symmetries
of φ(t12, t23). In more detail, [t12, t23] is antisymmetric under the S3 action on
indices. Hence the symmetrization of φ(t12, t23) ∧ [t12, t23] picks out the the
antisymmetric part of φ(t12, t23), which is zero by the hexagon equation. The
second equality follows directly from the cabling relation (or equivalently, the
semiclassical hexagon), which in turn follows from the hexagon equation (see
[6] for a proof and more details on those relations).

Next we need to show that T3 is also closed under d[,]. This is tedious if one
writes everything out in detail. Gathering similar terms one obtains

d[,]T3 ∝ (A) ∧ t12 ∧ t23 ∧ t34 + (B) ∧ t12 ∧ t23 ∧ t24 + (. . . )
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where the terms (. . . ) can be obtained from the first two terms by permutations
of indices, so as to make whole expression symmetric. One calculates

A = −φ2,3,4 − φ1,2,3 + φ12,3,4 − φ1,23,4 + φ1,2,34 = 0

by the pentagon equation. Here we use the usual notation φ12,3,4 = φ(t13 +
t23, t34) etc. Similarly one computes

B = −φ1,2,3 − φ3,2,4 + φ1,2,4 + φ1,24,3 − φ1,23,4 + φ3,12,4

= −φ1,2,3 − φ3,2,4 − φ2,4,3 + φ12,3,4 − φ1,23,4 + φ1,2,34

= −φ3,2,4 − φ2,4,3 + φ2,3,4 = 0.

Here we used twice the pentagon and once the hexagon equation. Hence
d[,]T3 = 0. ⊓⊔

Now that we know that T3 is closed, we can construct U , which exists and is
unique up to exact terms by the remark preceding Algorithm 2. One can verify
(see Appendix J.4) that the output of Algorithm 2 agrees with the Tamarkin
map from grt1 to H0(GC2) (see Appendix J) and hence also with the map of
Theorem 1.1.

10 Applications

In this section we will discuss applications of the results obtained in this
paper. We suppose that the reader is already familiar with the basic objects
and questions of deformation quantization. If not, we refer to M. Kontsevich’s
seminal paper [27].

10.1 The action of the graph complex on formality morphisms

Let T •
poly = Ŵ(Rd; ∧•T Rd) be the space of multivector fields on Rd . There

is an action of the operad Gra2 on Tpoly, given by (9). Hence Tpoly is also a
Gerstenhaber algebra via the operad map (8). It also follows that there is an
action of the dg Lie algebra Def(hoLie2 → Gra2) on Tpoly[1] by pre-L∞-
derivations. Here the closed degree zero elements act by true L∞-derivations.
In particular, the closed degree zero elements of GC2 ⊂ Def(hoLie2 → Gra2)

act in this way. By the identification grt1
∼= H0(GC2) there is also an action

of grt1 on Tpoly, defined up to homotopy.
Any such action on Tpoly also yields an action on the space of its Maurer–

Cartan elements, i. e., on Poisson structures, see also [25].
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Furthermore, let Dpoly be the space of polydifferential operators on Rd .
The main result of deformation quantization is M. Kontsevich’s Formality
Theorem, stating the existence of an L∞ quasi-isomorphism

Tpoly[1] → Dpoly[1].

In the following, such a morphism will be called a formality morphism. By
composition, closed degree zero elements of Def(hoLie2 → Gra2) and GC2
and grt1 act on the space of formality morphisms. Notice that in this manner
one obtains a right action on formality morphisms, and one has to flip the sign
to obtain a left action.

10.2 Recollection: D. Tamarkin’s proof of the Formality Theorem and the
GRT1 action

M. Kontsevich originally proved his Formality Theorem by writing down
an explicit formula, involving certain hard-to-compute configuration space
integrals. Tamarkin later gave a different proof [22,38] as follows. First, one
endows Dpoly with a hoe2 structure, whose hoLie2 part agrees with the usual
one. This step depends on the choice of a Drinfeld associator. Secondly, by
homotopy transfer one knows that Dpoly with that hoe2 structure is hoe2-quasi-
isomorphic to its cohomology Tpoly, with some non-standard hoe2 structure.
Call this latter space T ′

poly to distinguish it from Tpoly with the standard hoe2
structure. Finally, Tamarkin shows a rigidity result, which states that there are
no obstructions for the existence of a hoe2-quasi-isomorphism Tpoly → T ′

poly.
The hoLie2 part of the composition Tpoly → T ′

poly → Dpoly is the sought after
formality morphism.

There are multiple ways of endowing Dpoly with a hoe2 structure. Contrary
to [38] we will use a formality morphism of the operad of chains of the little
disks operad as in [41]. The latter operad is quasi-isomorphic to the braces
operad Br, which naturally acts on Dpoly [28]. One may write down a chain of
quasi-isomorphisms of operads

Br → · · · → CN PaCD → BU t ← e2 ← hoe2.

The operads occurring in this chain are explained in more detail in [41,44,46]
and are unimportant here. Lifting (up to homotopy) yields a map hoe2 → Br
such that the restriction hoLie2 → Br is the usual map and hence one obtains
the desired hoe2 structure on Dpoly. A Drinfeld associator (cf. Sect. 6) is used
for constructing the map to CN PaCD in the above chain, see [41] for details.

The Grothendieck–Teichmüller group GRT1 (and its Lie algebra grt1) act
on PaCD and hence on CN PaCD in the above chain. Equivalently, GRT1 acts
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on the set of Drinfeld associators, one element of which is chosen to produce
the map into CN PaCD. Still equivalently (up to homotopy) GRT1 and grt1
act on hoe2 up to homotopy by transfer. The latter action is the one from [39],
recalled in Sect. 6.3.1.

Now suppose we have fixed a Drinfeld associator �1 yielding a map F1 :
hoe2 → Br. Suppose we obtain another associator �2 by the action of g ∈
GRT1. Denote the automorphism of hoe2 corresponding to g by g as well,
abusing notation. From F1 and F2 := F2 ◦ g we obtain two hoe2 structures on
Dpoly, say Dpoly and D′

poly, and two essentially unique homotopy Gerstenhaber
quasi-isomorphisms Tpoly → Dpoly, Tpoly → D′

poly. The map Tpoly → D′
poly

may be chosen to fit into a commutative diagram

where T ′
poly is obtained from Tpoly by acting on the standard hoe2 structure with

g, and g′ : Tpoly → T ′
poly is the essentially unique homotopy Gerstenhaber

isomorphism.
Of course, as hoLie2 algebras Tpoly = T ′

poly and Dpoly = D′
poly. Restricting

to the hoLie2 parts of f1 and f2 one obtains L∞ quasi-isomorphisms

f̃1, f̃2 : Tpoly[1] → Dpoly[1].

If we denote the L∞ parts of g′ and f ′2 by g̃′ and f̃ ′2, one can then check that
possibly up to homotopy f̃ ′2 = f̃1 and hence

f̃1 = f̃1 ◦ g̃′.

The infinitesimal version of this action is the one described in Sect. 6.3.2.

Remark 10.1 It has been pointed out to the author by Dolgushev that the above
statement is not obvious because the morphisms considered are homotopy or
(∞-)morphisms and not strict morphisms of hoe2 algebras. If A → B is a
strict quasi-isomorphism of hoe2 algebras and A′, B ′ are the same objects but
with hoe2 structure altered by g as above, then clearly the same map induces a
strict morphism A′ → B ′. In particular, if the hoLie2 structure is unaltered then
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the resulting strict morphisms of hoLie2 algebras A → B trivially agree. The
analog statement for homotopy morphisms instead of strict ones is not obvious.
However, we may understand each such quasi-isomorphism A → B as a
zigzag of strict quasi-isomorphisms A ← X → B. Then, changing all hoe2
structures by g, we obtain a zigzag of strict quasi-isomorphisms A′ ← X ′ →
B ′. If the hoLie2 part of the structure is unaltered, one again obtains trivially
the same homotopy hoLie2 morphism. In our setting the quasi-isomorphism
f ′2 : T ′

poly → D′
poly is essentially unique (up to homotopy) and hence the

induced L∞ morphism f̃ ′2 must agree (up to homotopy) with f̃1. An alternative
approach is described in [34].

10.3 Relation of the Tamarkin and Kontsevich formality morphisms

Tamarkin’s proof of the Kontsevich Formality Theorem depends on the choice
of a Drinfeld associator. Different choices of associator yield different formal-
ity quasi-isomorphisms. On the other hand, M. Kontsevich’s original proof
featured a very different construction of one particular formality morphism
UK , using graphical techniques. This construction contains essentially no “free
parameters”. It has been an open question for some time how Tamarkin’s and
M. Kontsevich’s constructions of formality morphisms fit together.

I think I can now give an answer, to some extend. First it is shown in [46]
that Tamarkin’s formality morphism (more precisely the version of Sect. 10.2)
is homotopic to the one constructed by M. Kontsevich [27], if one chooses for
the associator the Alekseev-Torossian associator �AT [2,44]. Secondly, the
action of the Grothendieck–Teichmüller group on the set of Drinfeld associa-
tors is free and transitive. Hence any Drinfeld associator can be obtained from
a particular one, say �AT , by integrating the flow on the space of Drinfeld
associators generated by some grt1-element. By this action grt1 also acts on
L∞ formality morphisms obtained by the Tamarkin construction as detailed in
the preceding subsection. As seen there this action is up to homotopy the same
as the one obtained by first mapping grt1 to H0(GC2) by the map of Theorem
1.1, and then acting with a representing degree zero graph cohomology class as
in Sect. 10.1. From these arguments, one sees that any Tamarkin type formality
morphism can be obtained, up to homotopy, by integrating the action of some
degree 0 cocycle Ŵ ∈ GC2 on Tpoly, followed by applying Kontsevich’s for-
mality morphism UK . Since UK is already constructed by “graphical means”,
one can incorporate this action into the construction of UK . One just has to
modify the way weights are associated to graphs in M. Kontsevich’s definition
of UK . This shows how one can obtain, using “purely graphical techniques”,
a big class of formality morphisms.
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10.4 An answer to a question of B. Tsygan

Let � be a Drinfeld associator. To � one can assign a formal odd power series

f̃�(x) =
∑

j≥1

f̃2 j+1x2 j+1

where the number f̃2 j+1 is the coefficient of X2 j Y in the series �(X, Y ). Now
let ψ be a grt1-element, and use it to act on �. It is easy to check that this
action changes the coefficient of X2 j Y by the coefficient of ad2 j

X Y in ψ(X, Y ).
Let us call this coefficient s̃2 j+1(ψ). The s̃2 j+1 ( j = 1, 2, . . . ) can be checked
to vanish on

[
grt1, grt1

]
and hence form Lie algebra cocycles of grt1.

Next let U� be the formality morphism associated to � by the Tamarkin
construction as in Sect. 10.2. One can use it to construct a proof of Duflo’s
Theorem along the lines of [27, section 8]. The version of the Duflo morphism
obtained then has the form

J ◦ e

∑
j≥1 f2 j+1tr

(
ad2 j+1

∂

)

where J is the usual Duflo morphism and the f2 j+1 are numbers, depending
on the formality morphism. Hence there is a natural way to define another odd
formal power series for �, namely

f� =
∑

j≥1

f2 j+1x2 j+1,

B. Tsygan asked the following question: Is f� = f̃�?

Lemma 10.2 The answer to B. Tsygan’s question is yes, i. e., f� = f̃�.

Since the action of grt1 on Drinfeld associators is transitive, it will be sufficient
to prove the following two statements.

(1) For the Alekseev-Torossian associator �AT , f�AT
= f̃�AT

.
(2) For ψ ∈ grt1 and any associator �,

fψ ·� = f̃ψ ·�

where fψ ·� should be understood as “derivative of f(·) along ψ · at �”.
Let us begin with the first statement. The Alekseev-Torossian associator can

be shown to be even, i. e., it contains only monomials in X, Y of even degree.
Hence f�AT

= 0. From the previous subsection on the other hand we know
that U�AT

is homotopic to Kontsevich’s morphism UK . It is been shown in
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[27] and [37] that from UK one obtains the original Duflo morphism. Hence
we conclude f̃�AT

= 0 = f�AT
.

For the second statement, fix some ψ ∈ grt1. The right hand side of the
equation we want to show is f̃ψ ·� =

∑
j s̃2 j+1(ψ)x2 j+1. Let Ŵ be graph

cocycle, whose cohomology class corresponds to ψ . From the identification
of Lie algebras grt1

∼= H0(GC2) one (of course) also obtains an identifica-
tion of the Lie algebra cohomology classes. The class represented by s̃2 j+1
corresponds to the graph homology class represented by a wheel with 2 j + 1
spokes by Proposition 9.1. If we call the graph cycle given by this wheel graph
s2 j+1 ∈ GC∗

2, with sign convention as in Proposition 9.1, we can hence write

f̃ψ ·� = −
∑

j

s2 j+1(Ŵ)x2 j+1.

Next we should compute fψ ·�. Suppose we change our formality morphism by
precomposing it with some L∞-automorphism V of Tpoly. Then the associated
Duflo morphism changes by precomposing with the automorphism Vπ

1 of Sg.
Here g is the Lie algebra for which we write down the Duflo morphism and
Vπ

1 is the first Taylor component of the L∞-morphism obtained by twisting
V by the Poisson structure π on g∗. Suppose now that that V is obtained by
integrating the action of the graph cocycle−Ŵ, i. e., V = exp(−tŴ·).10 We can
assume without loss of generality that Ŵ is 1-vertex irreducible. Then using
the linearity of π it can be checked that the only terms in Vπ

1 that do not vanish
on Sg come from the wheel graphs. More precisely

Vπ
1 |Sg= e

−t
∑

j s2 j+1(Ŵ)tr
(

ad2 j+1
∂

)

.

Taking the derivative at t = 0 we can hence conclude that fψ ·� =
−

∑
j s2 j+1(Ŵ)X2 j+1 = f̃ψ ·�. ⊓⊔

10.5 Globalization and a proof of a result announced by M. Kontsevich

Degree zero cocycles of GC2 can be naturally interpreted as L∞-derivations of
the polyvector fields on Rd . Using some globalization methods as in [9,11,12],
one can obtain L∞-derivations also on the space of polyvector fields on any
smooth manifold, or on the sheaf cohomology of the sheaf of holomorphic
polyvector fields on a complex manifold. This has been used in [13] together
with Proposition 9.1 above, to show that the cocycles corresponding to the
σ2 j+1 act on the sheaf cohomology of the sheaf of holomorphic polyvector

10 Note that the degree zero graph cocyles carry a left action on Tpoly, hence to obtain a left
action on formality morphisms one needs to introduce an extra sign.
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fields by contraction with the odd Chern characters, thus showing an earlier
claim by M. Kontsevich [26].
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Appendix A: Harrison complex of the cofree coalgebra

Let us recall some general (and well known) facts from homological algebra.
Let

FCom∗(X1, . . . , Xk)

be the free cocommutative coalgebra cogenerated by symbols X1, . . . , Xk .
Since this coalgebra is cofree, its reduced Harrison complex Harr(FCom∗(X1,

. . . , Xk)) has cohomology

H j (Harr(FCom∗(X1, . . . , Xk))) ∼=
{

KX1 ⊕ · · · ⊕KXk for j = 1

0 otherwise
.

Here KX1 ⊕ · · · ⊕ KXk
∼= Kk shall denote the k-dimensional vector space

generated by the set X1, . . . , Xk . Since the differential on Harr(· · · ) cannot
create or annihilate any of the formal variables, the complex

Harr(FCom∗(X1, . . . , Xk))

inherits a Zk grading. Of particular interest to us is the subcomplex of degree
(1, 1, . . . , 1),

Harr(1,...,1)(FCom∗(X1, . . . , Xk)).
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It immediately follows from the formula for the cohomology of Harr(· · · )
above that

H j (Harr(1,...,1)(FCom∗(X1, . . . , Xk))) ∼=
{

K for j = 1 and k = 1

0 otherwise
.

Let us denote the p-fold symmetric tensor product of a dg vector space V by
S pV , i.e.,

S pV = (V⊗p)Sp .

S pHarr(FCom∗(X1, . . . , Xk)) inherits a Zk grading. The subcomplex of degree
(1, . . . , 1) is of special importance to us and we will abbreviate

Vp,k,n := (S p(Harr(FCom∗(X1, . . . , Xk))[1− n]))(1,...,1).

As taking invariants with respect to finite group actions commutes with taking
cohomology,

H j (Vp,k,n) ∼=
{

K for j = kn and p = k

0 otherwise
.

Note that Vp,k,n carries a natural action of the symmetric group Sk by permuting
the indices of the variables X j . Again because taking invariants with respect to
finite group actions commutes with taking cohomology, the following Lemma
is evident.

Lemma A.1 Let p, k, n ∈ N, let G ⊂ Sk be a subgroup, and let M be some

G-module. Then

H j ((Vp,k,n ⊗ M)G) ∼=
{

(M ⊗ sgn⊗n)G for j = kn and p = k

0 otherwise
.

Here Vp,k,n is considered a G-module, and the G-action on the tensor product

is the diagonal action.

Appendix B: The deformation complex of n-algebras

B.1. The (co)operads en and e∨n

The operad en is the operad governing n-algebras. An n-algebra is a (graded)
vector space V with binary operations ∧ of degree 0 and [·, ·] of degree 1− n

satisfying the following relations:
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(1) (V,∧) is a graded commutative algebra.
(2) (V [n − 1], [·, ·]) is a graded Lie algebra.
(3) For all (homogeneous) v ∈ V , the unary operation [v, ·] is a derivation of

degree |v| + 1− n on (V,∧).

Elements of en(N ) can be written as linear combinations of expressions of
the form

L1(X1, . . . , X N ) ∧ . . . ∧ Lk(X1, . . . , X N ) (38)

where X1, . . . , X N are formal variables, L j are Lie{n − 1} words and each
X i occurs exactly once in the expression. The action of the symmetric group
SN on en(N ) is given by permuting the labels on the X1, . . . , X N . From the
length of the individual Lie words one can derive various filtrations on en . We
denote by by

en(N )k1,k2,...

the subspace spanned by elements of the form (38) with k j the number of Lie
words of length j , j = 1, 2 . . . . Clearly

∑
j jk j = N and furthermore the

cohomological degree is N −
∑

j k j .

Example B.1 For example, in the expression

X1 ∧ [X4, X3] ∧ X2

the number of Lie words of length 1 is k1 = 2.

The cooperad e∨n is the Koszul dual cooperad to en . One can show that
e∨n = e∗n{n}. Dualizing the direct sum decomposition of en(N ) into subspaces
en(N )k1,k2,... we may write

e∨n (N ) =
⊕

k1,k2,...

e∨n (N )k1,k2,... (39)

where e∨n (N )k1,k2,... is dual to (en{n})(N )k1,k2,....

Remark B.2 One may represent e∨n using graphs. Then e∨n (n)k1,k2,... is the
space of graphs with k1 isolated vertices, k2 connected components of size 2,
k3 connected components of size 3 etc.
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736 T. Willwacher

B.2. hoen and a(nother) filtration on the deformation complex

Recall that hoen = �(e∨n ) is the operadic cobar construction of the cooperad
e∨n . Inserting the direct sum decomposition above into (3) we see that

Def(hoen → en) =
∏

k1,k2,...

HomSN
(e∨n (N )k1,k2,..., en(N ))

where we abbreviate N =
∑

j jk j within the product on the right hand side.
The differential on Def(hoen → en) contains one part, say d+, that raises k1 by
one, and one part that leaves k1 constant. Let us put a filtration on Def(hoen →
en) so that d+ is the differential on the associated graded. Concretely,

F pDef(hoen → en) =
∏

k1,k2,...

HomSN
(e∨n (N )k1,k2,..., en(N ))≥k1−p

where the final subscript shall indicate that only the subspace of cohomological
degrees ≥ k1 − p is taken.

B.3. A more concrete description of the differential d+

Let

e∨n (N )′ :=
⊕

k2,k3,...

e∨n (N )0,k2,k3,....

Then we may write

grDef(hoen → en) ∼=
∏

N

∏

k1≤N

HomSk1×SN−k1
(sgnn

k1
⊗ e∨n (N − k1)

′, en(N ))

∼=
∏

N

∏

k1≤N

HomSN−k1
(e∨n (N−k1)

′, HomSk1
(sgnn

k1
, en(N ))).

The differential d+ on this complex may be seen as induced by a differential on

HomSk1
(sgnn

k1
, en(N )) ∼=

(
sgnn

k1
⊗ en(N )

)Sk1

which we abusively also denote by d+. Elements of
(

sgnn
k1
⊗ en(N )

)Sk1
may

be understood as expressions P(X1, . . . , Xk1, A1, . . . , Am) in formal variables
X1, . . . , Xk1, A1, . . . , Am , with m = N −k1, of the form (38), invariant under
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M. Kontsevich’s graph complex 737

permutations (with signs) of X1, . . . , Xk1 . Using this notation, the formula for
the differential d+ is:

± (d+P)(X1, . . . , Xk1+1, A1, . . . Am)

=
k1+1∑

i=1

(−1)n(i+1)
[

X i , P(X1, . . . , X̂ i , . . . , Xk1+1, A1, . . . , Am)
]

−
∑

1≤i< j≤k1+1

(±)(−1)n(i+ j+1)

P
([

X i , X j

]
, X1, . . . , X̂ i , . . . , X̂ j , . . . , Xk1+1, A1, . . . , Am

)

−
k1+1∑

i=1

m∑

j=1

(±)(−1)n(i+1)

P(X1, . . . , X̂ i , . . . , Xk1+1, A1, . . . ,
[
X i , A j

]
, . . . , Am)

=
∑

1≤i< j≤k1+1

(±)(−1)n(i+ j+1)

P
([

X i , X j

]
, X1, . . . , X̂ i , . . . , X̂ j , . . . , Xk1+1, A1, . . . , Am

)
.

Here the signs (±) occur only in the case of even n and are a bit tricky, owed
to the oddness of the Lie bracket.11 For example, in the third line, one should
write down a term of P , and then compute the number of brackets to the left of
the first argument. This gives the sign. The last equality follows since [X i , ·]
is a derivation with respect to the product and the Lie bracket.

Remark B.3 In particular, note that d+ = 0 on the subspace with k1 = 0.

B.4. The cohomology is concentrated in degree k1 = 0

Let

� =
∏

k2,k3,...

HomSN
(e∨n (N )0,k2,k3,..., en(N )) ⊂ Der(hoen → en)

be the subspace of Der(hoen → en) corresponding to k1 = 0. The main result
of this section is the following.

Proposition B.4 � ⊂ Der(hoen → en) is a subcomplex. The inclusion is a

quasi-isomorphism.

11 Strictly speaking, our notation here is almost wrong since different summands of P may
pick up different signs.
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The first statement follows directly from Remark B.3. For the second state-
ment, let us compute the spectral sequence associated to the filtration by k1
introduced above. Because � is a subcomplex, it will be sufficient to show that
the cohomology of the associated graded grDef(hoen → en) is �. Given the
description of the differential on the associated graded above, it is sufficient
to show that the complexes

Cm :=

⎛
⎝

⊕

k1≥1

(
sgnn

k1
⊗ en(m + k1)

)Sk1 , d+

⎞
⎠

are acyclic. Note that clearly Lie{n−1}(m+k1) ⊂ en(m+k1). One can make
a first reduction on the problem.

Lemma B.5 If the complexes

Lm :=

⎛
⎝

⊕

k1≥1

(
sgnn

k1
⊗ Lie{n − 1}(m + k1)

)Sk1 , d+

⎞
⎠

are acyclic, then so are the complexes Cm .

Proof Consider a complex C̃m that is (like Cm) spanned by products

P(X1, . . . , Xk1, A1, . . . , Am)

of Lie words, but with the A1, . . . , Am allowed to occur with repetitions. It
splits as a sum of subcomplexes according to the number of occurences of
A1, A2 etc. Cm ⊂ C̃m is simply the subcomplex in which each A1, A2, . . .

occurs exactly once. It is sufficient to prove that the cohomology of C̃m is
precisely its k1 = 0-part. However, C̃m is a cofree cocommutative coalgebra,
the coproduct being the deconcatenation of Lie words. The cogenerators are
those expressions P(X1, . . . , Xk1, A1, . . . , Am) containing only a single Lie
word. If Lm is acyclic, the cohomology of the space of generators is precisely
its k1 = 0-part. ⊓⊔

Hence we are left with showing that the complexes Lm are acylic. For L0
this is easy to see (L0 is only two-dimensional by the Jacobi identity). Now
suppose that m ≥ 1. Then the space of Lie words in X1, . . . , Xk1, A1, . . . , Am ,
each symbol occuring exactly once, can be identified with the space of ordi-
nary (associative) words in symbols X1, . . . , Xk1, A2, . . . , Am , each occuring
exactly once. For example (for m = 3, k1 = 2)

[X1, [A3, [X2, [A2, A1]]]] ↔ X1 A3 X2 A2.
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A basis for the (anti-)symmetric part in the X j can be given by symbols like

X A3 X A2. ↔ X1 A3 X2 A2 ± X2 A3 X1 A2.

In this basis, the differential is given by “doubling” X ’s, i.e.,

d+(X A3 X A2) = X X A3 X A2 ± X A3 X X A2.

It is well known that this complex is acyclic. An explicit homotopy is “con-
tracting” pairs of X ’s. Hence the proposition is proven.

Appendix C: Def(hoen → Graphsn) and Def(hoen → Gran)

At several points of this paper we use combinatorial arguments to compute
the cohomology of Def(hoen → Graphs�

n ) or some subcomplex or quotient.
The combinatorics are much easier to understand and to describe in words if
one identifies elements of Def(hoen → Graphs�

n ) with certain linear combi-
nations of graphs. Using the splitting (39) again, we may write

Def(hoen → Graphs�
n ) =

∏

k1,k2,...

HomSN
(e∨n (N )k1,k2,..., Graphs�

n (N ))

where again N =
∑

j jk j within the product.

The space HomSN
(e∨n (N )k1,k2,..., Graphs�

n (N )) may now (-up to a degree
shift-) be understood as the subspace of elements Ŵ ∈ Graphs�

n (N ) with the
following symmetry properties:

(1) Consider the N external vertices to be organized into clusters, with k1
clusters of 1 vertices, followed by k2 clusters of 2 vertices, etc. Then
the (linear combination of) graphs Ŵ must be invariant under interchange
(with sign) of clusters of the same size. The sign is (−1) j+n+1 for the
interchange of clusters of size j .

(2) Ŵ must “vanish on shuffles” in any cluster. This means the following. Fix
some cluster of length j , and fix j1, j2 ≥ 1 s.t. j = j1 + j2. Let USh j1, j2

be the set of ( j1, j2)-unshuffle permutations, which we consider acting on
Graphs�

n (N ) by permuting the vertices in the cluster under consideration.
Then we require

∑

σ∈USh j1, j2

± σ · Ŵ = 0.
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The complex Def(hoen → Gra�
n ) has a similar interpretation in terms of

graphs. Indeed, it is obtained from Def(hoen → Graphs�
n ) by sending all

graphs with internal vertices to zero. The complexes Def(hoen → Gran) and
Def(hoen → Graphsn) can similarly be given a graphical description, by just
dis-allowing tadpoles in the graphs.

Remark C.1 The degree of a graph can be computed as n · (#vertices − 1)−
(n − 1) · (#edges), when we count a cluster with k vertices as k vertices (of
course) and k − 1 edges.

Example C.2 Let us give one example to illustrate the concept. The following
linear combination of graphs

represents an element in Def(hoe2 → Graphs2) that sends the coproduct
operation in e∗2(2) to the graph

and the cobracket operation in e∗2(2) to the graph

in Graphs2(2). The first term in the sum above is of degree −1, while the
second term is of degree 1.

C.1. A Graphical description of the differential

Let us describe the differential on Def(hoen → Graphs�
n ) combinatorially,

using the graphical language from the last subsection. The differential has four
parts:

(1) The first part splits an internal vertex into two internal vertices. It comes
from the differential on Graphs�

n .
(2) The second part splits an external vertex into an external and an internal

vertex. It also comes from the differential on Graphs�
n .

(3) The third part, dL , splits a cluster of external vertices into two clusters, by
splitting one external vertex in that cluster. It creates an edge between the
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±

( )
( )

( )±

( ) ±( )

Fig. 14 A schematic illustration of the various parts of the differential on the complex
Def(hoen → Graphsn). Using the splitting of the differential as in (7), the first line corre-
sponds to δ, the second to d[,] and the third to d∧. For a detailed description, see the text
below

two vertices that the original vertex was split up into (see Fig. 14). This
part of the differential is denoted by d[,] in (6).

(4) The fourth part, denoted d∧ in (6), also creates an external vertex, but does
not split the cluster and does not introduce a new edge. Hence it maps a
cluster of length j to one of length j + 1. (For a picture, see again Fig.
14.)

In the complex Def(hoen → Gran) the first two terms are absent.

Appendix D: Sketch of proof of Lemma 5.7

Our goal is to show that the double complex

0 → �conn → Def(hoen → Gra�
n )conn → Def(hoLien → Gra�

n )conn → 0

is acyclic. Equivalently, we have to show that the inclusion

�conn → Def′(hoen → (Gra�
n ))conn

is a quasi-isomorphism, where the ′ on the right hand side indicates that one
restricts to those derivations with vanishing hoLien-part.

To go further, we need to use notation from Appendix C, in particular the
graphical representation of Def(hoen → Gra�

n ). For each graph occurring
in Def(hoen → Gra�

n )conn one can associate a number k1, the number of
“clusters” (notation as in Appendix C) of length 1 in that graph. This yields a
filtration on the graded vector space Def(hoen → Gra�

n )conn, which descends
to a filtration on Def′(hoen → (Gra�

n ))conn. One takes an appropriate spectral
sequence such that the first differential increases k1 by exactly one. More
concretely, this differential, say d+, acts by spliting off a length one cluster
from any vertex. Let us introduce new terminology. Let us call vertices in
clusters of length 1 “internal” and all others external. Then a computation
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very much similar to the computation of H(Graphs�
n ) ∼= en shows that the

cohomology of Def′(hoen → (Gra�
n ))conn is given by closed graphs without

internal vertices. In other words, graphs with all clusters of length ≥ 2, and
which actually lie in Def(hoen → en)conn ⊂ Def(hoen → Gra�

n )conn. But
that space is the space we called �conn.

Appendix E: (Re-)Derivation of Furusho’s result

In a remarkable paper [19], H. Furusho showed that the hexagon equation
(25) is a consequence of the pentagon equation (24), if one requires that φ ∈
FLie(X, Y ) (as in those equations) does not contain the term [X, Y ]. Rephrasing
this result in operadic language, it reads as follows.

Proposition E.1

H1(Def(Ass∞ → t[1])) ∼= H1(Def(Com∞ → t[1]))⊕K[−1].

Here the K[−1] corresponds to the cohomology class represented by φ =
[X, Y ].

Proof We will actually show that H1(Def(Ass∞ → ICG�[1])) ∼= H1(Def
(Com∞ → ICG�[1]))⊕ K[−1]. Take a spectral sequence as in the proof of
Lemma 4.4. The difference to the situation there is that we now have to compute
the Hochschild instead of the Harrison cohomology of a cofree cocommutative
coalgebra. But it is well known that the Hochschild cohomology of such an
algebra is the Koszul dual algebra, i. e., an (anti-)commutative free algebra.
Translated into graphical language, it means that the cohomology is given by
graphs, whose external vertices are connected by exactly one edge each, and
which are antisymmetric under interchange of external vertices. The space of
such graphs with q external vertices forms a subcomplex Cq ⊂ Def(Ass∞ →
ICG�[1]). In the language of [29] this subcomplex computes the part of the
cohomology of Hodge degree q. Let us compute the degree 1 cohomology of
Cq for various q. We already saw that H(C1) ∼= H1(Def(Com∞ → t[1])) ∼=
grt1.

Next, suppose we are given a closed linear combination of graphs xq ∈ Cq of
cohomological degree 1. We split the differential on Def(Ass∞ → ICG�[1])
into a part ds creating an external vertex, and a part δ not creating one. In fact,
δ is the part of the differential coming from the differential on ICG�. If q �= 3
we can write xq = −δyq for some yq since H(ICG�) ∼= t is concentrated in
degree 0. Hence our cohomology class is also represented by ds yq =: xq+1. If
q ≥ 4 we can continue in this manner (i. e., xq+1 = −δyq+1, etc...) indefinitely
by degree reasons and see that the cohomology class represented by xq is trivial.
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Fig. 15 The graph
corresponding to the
[t12, t23] ∈ t3 1 2 3

Hence we have

H1(Def(Ass∞ → t[1])) ∼= H1(C1)⊕ H1(C2)⊕ H1(C3).

If q = 3, then xq describes a non-trivial cohomology class only if it describes
an element of t3 which can be recovered by projecting to the internal-trivalent-
tree part of the graphs. However, since the external vertices are of valence 1,
the only possible tree with all external vertices of valence 1 is the graph, say T3,
with one internal vertex, see Fig. 15. This graph corresponds to [t12, t23] ∈ t3.
Hence H1(C3) ∼= K, the one cohomology class represented by T3.

The statement of the proposition is thus reduced to showing that H1(C2) =
0. So suppose x2 ∈ C2 is a degree 1 cocycle. We decompose x2 = x2a + x2b

where x2a contains those graphs for which both external vertices are connected
to the same internal vertex and x2b the remainder. One can see that necessarily
x2a = δy2a + (· · · ) where y2a ∈ C2 and (· · · ) is a linear combination of
graphs with the two (univalent) external vertices connected to different internal
vertices. Hence we may assume that in fact x2a = 0 from the start. In this case
x2 = x2b = δy2 for a y2 obtained by contracting one of the external edges.
One checks that combinatorially ds y2 cannot contain any trivalent-tree-part:
Such a tree must necessarily have (at least) two internal vertices connected to
different external vertices. Since one external vertex of every graph in y has
valence one, it means that one of the internal vertices must have two edges
connected to the same external vertex, which is a contradiction (or rather, the
graph is 0). Hence ds y is δ-exact again and hence by the same reasoning as in
the q > 3-case, the cohomology class of xq vanishes. Hence H1(C2) = 0 and
we are done. ⊓⊔

Remark E.2 Note that the calculation of H1(Def(Ass∞ → t[1])) above is
similar to calculations of H(gr pDef(hoe2 → e2)conn) performed in Sect. 7,
up to some sign and degree differences. The Hodge degree q corresponds to
the parameter p + 1 in Sect. 7.

Appendix F: The one vertex irreducible part of GCn is quasi-isomorphic

to GCn

Let GC1vi
n ⊂ GCn be the subspace of 1-vertex irreducible graphs, i.e., those

graphs that remain connected after deleting one vertex.
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Lemma F.1 GC1vi ⊂ GC is a sub-dg Lie algebra.

Proof It is clear. ⊓⊔

The following Proposition has been shown by Conant, Gerlits and Vogtman.

Proposition F.2 ([10]) GC1vi
n →֒ GC is a quasi-isomorphism.

We nevertheless give a different short sketch of proof for completeness, fol-
lowing the idea of Lambrechts and Volic [30].

Proof ((very sketchy) Sketch of proof) We need to show that GCn/GC1vi
n is

acyclic. Any non-1vi graph can be written using the following data: (i) a family
of 1-vertex-irreducible graphs (“1vi components”) (ii) a tree (iii) for each
vertex in the tree, a subset of vertices in the irrucible components. All vertices
in that subset are glued together to form the graph. The differential can be
decomposed into two parts: One part that changes one of the 1vi components,
and one that does not. One can set up a spectral sequence, such that its first term
is the latter part of the differential (leaving invariant the 1vi components).12

The resulting complex splits into subcomplexes according to the family of 1vi
components. Fix one such subcomplex, say C , and fix one vertex v in one of
the 1vi components, that belongs to the subset associated to vertex t of the
tree. There is a filtration C ⊃ C1, where C1 is the subspace containing graphs
such that the number of vertices in the subset of t is one and t has only one
incident edge. Take the spectral sequence. Its first term contains a differential
mapping

C/C1 → C1

which can easily be seen to be an isomorphism. ⊓⊔

Appendix G: A note on the convergence of spectral sequences

In this paper, we use spectral sequences to compute the cohomology of graph
complexes at various places, in particular for GCn and fGCn . We claim that
these spectral sequences indeed converge to the cohomology.

For GCn this is very easy to see. GCn splits into a direct sum of finite
dimensional subcomplexes, for fixed values of the difference

� = e − v := #edges− #vertices.

12 Note that the spectral sequence converges because the graph complex splits into finite dimen-
sional subcomplexes.
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Indeed, since each vertex is at least trivalent, one has e ≥ 3
2v and hence v ≤ 2�

is bounded within each subcomplex. But there are only finitely many graphs
with fixed � and bounded v, and hence each subcomplex is finite dimensional.

For fGCn the argument is a bit more subtle. Let F be a filtration on fGCn ,
compatible with the differential. Let fGC′

n be the same complex as fGCn , but
with the degrees shifted by (n − 1

2 )�, so that the new degree of a graph is

n(v − 1)− (n − 1)e +
(

n − 1

2

)
� = 1

2
(v + e)− n.

It is clear that (i) each grading component of fGC′
n is finite dimensional, that

(ii) the cohomology of fGC′
n is the same as that of fGCn up to degree shifts and

that (iii) one has a filtration F ′ on fGC′
n . By (i) the filtration F ′ is bounded and

hence the associated spectral sequence converges to the cohomology of fGC′
n .

But the spectral sequence associated to F is the same as that associated to F ′,
up to some degree shifts. Hence it converges to the degree shifted cohomology
of fGC′

n , which by (ii) is the cohomology of fGCn .

Appendix H: t, grt1, sder

Let sder be the operad of Lie algebras of special derivations of free Lie algebras
(see [3], or [16]). Elements of sder can be seen as internal trivalent trees in
ICG, modulo the Jacobi identity. As noted in [44] there is a spectral sequence
coming from the filtration on ICG by internal loops, whose first term contains
sder.

In particular, t is a sub-operad of Lie algebras of sder. The map t → sder

sends a generator ti j to the graph with a single edge between external vertices
i and j .

Proposition H.1 Let φ ∈ t3 and Ŵ its image in sder(3). Then φ can be recov-

ered from Ŵ as follows:

(1) Forget all graphs in Ŵ that have more than one edge incident to vertex 2.

(2) The coeffiecient c of the (single possible) graph with no vertex at 2 yields

the coefficient of t13 in φ.

(3) Interpret each remaining tree as a Lie tree rooted at 2, corresponding to

a Lie expression ψ ∈ FLie(X, Y ).

(4) Then φ = c · t13 + ψ(t12, t13).

Proof By induction on the degree. ⊓⊔

When interpreting the tree as a Lie tree, we use the following sign conven-
tion. In the ordering of the edges, the root edge of the tree must come first, then
all vertices of its left subtree, and then all vertices of the right subtree. For each
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subtree, we apply the same convention recursively. For example, consider the
following tree with the indicated ordering of the edges.

This tree is to be interpreted as the Lie word

[X, [X, [X, Y ]]] .

Appendix I: Twisting of operads

I.1. A Foreword

Any operad describes a certain kind of algebraic object. Often the algebraic
object (the representation of the operad) is easier to describe and comprehend
than the operad itself. So let us describe first what algebraic situation we want
to consider by defining a “twisted operad”.

Suppose we are given some operad P together with a P-algebra A. Suppose
further that we have a map hoLie → P . In particular, this means that A is also
a hoLie-algebra. Sweeping convergence issues under the rug, it makes sense
to talk about Maurer–Cartan elements in A, which are simply Maurer–Cartan
(MC) elements in the hoLie-algebra A. Fix such an MC element m. Twisting
the hoLie structure on A by m, one can in particular endow A with a new
differential. Furthermore one can construct new operations on A by inserting
m’s into the P-operations on A. The twisted operad TwP is defined such that
the algebra A with twisted differential and with this extended set of operations
is a TwP-algebra.

The important claim for this paper is that there is an action of the deformation
complex Def(hoLie → P) on the operad TwP . Concretely, it is defined as
follows: Suppose that we have a closed degree zero element x ∈ Def(hoLie →
P). Such an element gives a hoLie derivation (i.e., infinitesimal automorphism)
of the hoLie-algebra A. Having an MC element m ∈ A, one can twist this
derivation by m. One obtains in particular an (infinitesimally) different MC
element m′ ∈ A and hence also a new TwP-structure on A. The action of x on
the operad TwP is defined such that it induces that change of TwP-structure.
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Remark I.1 It is important that we define TwP such that A as above with

differential twisted by m is a TwP-algebra.

I.2. The construction

Let P be any (dg) operad. We will consider it here as a contravariant functor
from the category of finite sets (with bijections as morphisms) to the category
of dg vector spaces. For a finite set S, the space P(S) can be seen as the space
of #S-ary operations, with inputs labelled by elements of S. We will write for
short P(n) := P({1, . . . , n}). For some operation a ∈ P(n) and for some
symbols s1, . . . , sn we will write

a(s1, . . . , sn) ∈ P({s1, . . . , sn})

for the image of a under the map P( f ), where f : {s1, . . . , sn} → [n] is the
bijection sending s j �→ j . Similarly, for a ∈ P(n), b ∈ P(m), and symbols
s1, . . . , sm+n−1 we will write

a(s1, . . . , s j−1, b(s j , . . . , s j+m−1), s j+m, . . . , sm+n−1)

= (a ◦ j b)(s1, . . . , sm+n−1)

for the operadic composition.
Let hoLiek+1 := (Lie{k})∞ be the minimal resolution of the degree shifted

Lie operad. Concretely, the Lie bracket here has degree −k. An operad map
hoLiek+1 → P is described by a Maurer–Cartan element μ in

g = Def(hoLiek+1 → P) ∼=
∏

j

(P( j)⊗ (R[−k − 1])⊗ j )S j [k + 1].

On the right, the permutation group S j acts on P( j) as usual and on the tensor
product of R[−k−1]’s is by permutation, with appropriate signs. Up to degree
shift, elements of g are sums of symmetric or antisymmetric elements of P .

Remark I.2 Fixing a Maurer–Cartan element μ ∈ g fixes the notion of
“Maurer–Cartan element” in any (nilpotent) P-algebra A. Concretely, the lat-
ter is just a Maurer–Cartan element in the hoLiek+1-algebra A.

We next want to define an operad TwP that governs P-algebras “twisted by”
a Maurer–Cartan element in the sense of the Remark. The underlying functor
is defined on a set S as

TwP(S) =
∏

j≥0

(P(S ⊔ {1̄, . . . j̄})⊗ (R[k + 1])⊗ j )S j
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where the symmetric group S j acts by permutation on the symbols 1̄, . . . , j̄

and be appropriate permutation (with signs) on the R[k + 1]. An element of
the j-th factor in the product should be seen as an operation in P invariant
under permutations of the last j slots. For an element a in the j-th factor of
TwP(n) and some symbol set S = {s1, . . . , sn+ j } the expression

a(s1, . . . , sn, sn+1, . . . sn+ j ) ∈ P(S)[ j (k + 1)]

accordingly makes sense. The operadic compositions are defined for homoge-
neous (wrt. both the grading by j and the degree) elements a ∈ TwP(m), b ∈
TwP(n)

(a ◦l b)(s1, . . . , sm+n−1, 1̄, . . . j1 + j2) =
=

∑

I⊔J=[ j1+ j2]
sgn(I, J )k+1(−1)|b| j1(k+1)

a(s1, . . . , sl−1, b(sl, . . . , sl+n−1, J̄ ), . . . , sm+n−1, Ī )

∈ (P(S ⊔ {1̄, . . . j1 + j2})⊗ (R[k + 1])⊗( j1+ j2))S j1+ j2

where Ī is shorthand for ī1, ī2, . . . with i1 < i2 < . . . being the members of
the set I , and similarly for J̄ . The sign is the sign of the shuffle permutation
bringing i1, . . . , j1, . . . in the correct order.

Remark I.3 An element of TwP should be thought of as an operation in P ,
with Maurer–Cartan elements inserted into some of its slots.

Next we want to define a differential on TwP . First, denote by T̃wP the
operad TwP as defined so far, with the differential solely the one coming from
the differential on P . On T̃wP we have a right action of the (dg) Lie algebra
g. Concretely, for homogeneous x ∈ g, a ∈ T̃wP(n) we have

(a · x)(1, . . . , n, 1̄, . . . j1 + j2)

=
∑

I⊔J=[ j1+ j2]
sgn(I, J )k+1a(1, . . . , n, Ī , x( J̄ )).

Lemma I.4 This formula describes a right action by operadic derivations.

123



M. Kontsevich’s graph complex 749

Proof For homogeneous elements we compute

((a ◦l b) · x)(s1, . . . , sm+n−1, 1̄, . . . , j1 + j2 + j3)

=
∑

I⊔J⊔K=[ j1+ j2+ j3]
sgn(I ∪ J, K )k+1sgn(I, J )k+1(−1)|b| j1(k+1)

a(s1, . . . , sl−1, b(sl, . . . , sl+n−1, J̄ ), . . . , sm+n−1, Ī , x(K̄ ))

+ sgn(I ∪ J, K )k+1sgn(I, J )k+1(−1)(|b|+|x |) j1(k+1)

a(s1, . . . , sl−1, b(sl, . . . , sl+n−1, J̄ , x(K̄ )), . . . , sm+n−1, Ī )

= ((−1)|b||x |(a · x) ◦l b+a ◦l (b · x))(s1, . . . , sm+n−1, 1̄, . . . , j1+ j2+ j3)

For the last equality we used that

sgn(I ∪ J, K )sgn(I, J ) = sgn(I, J ∪ K )sgn(J, K )

= sgn(I ∪ K , J )sgn(I, K )(−1)|J ||K |.

⊓⊔

Of course, multiplying by a sign, one can make this right action into a left
action.

For any operad Q, the unary operations Q(1) form an algebra, hence in
particular a Lie algebra, which acts on Q by operadic derivations. Concretely,
for q ∈ Q(1), a ∈ Q(n) the formula is

q · a = q ◦1 a − (−1)|a||c|
n∑

j=1

a ◦ j q. (40)

Suppose that in addition some Lie algebra h acts from the left on Q by operadic
derivations. Then also the Lie algebra h ⋉ Q(1) acts on Q by operadic deriva-
tions. Applying this to our case, we see that the Lie algebra

ĝ = g ⋉ T̃wP(1)

acts on T̃wP(1) by operadic derivations. Given some (homogeneous) element
x ∈ g, we construct an element x1 ∈ T̃wP(1) by the formula

x1(1, 1̄, . . . , j̄) = x(1, 1̄, . . . , j̄). (41)

Lemma I.5 If μ ∈ g is a Maurer–Cartan element, then μ̂ = μ − μ1 is a

Maurer–Cartan element in ĝ = g ⋉ T̃wP(1).
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Proof Let us compute this for homogeneous μ, the general case is analogous.

1

2
[μ1, μ1] (s1, 1̄, . . . , 2m − 2) =

∑

I⊔J=[2m−2]
sgn(I, J )k+1μ(μ(s1, Ī ), J̄ )

= −
∑

I⊔J=[2m−2]
sgn(I, J )k+1(−1)m(k+1)μ(μ( Ī ), s1, J̄ )

= −
∑

I⊔J=[2m−2]
sgn(I, J )k+1(−1)k+1μ(s1, J̄ , μ( Ī ))

= −
∑

I⊔J=[2m−2]
sgn(I, J )k+1(−1)m(m−1)(k+1)μ(s1, Ī , μ( J̄ ))

= −μ1 · μ(s1, 1̄, . . . , 2m − 2) = μ · μ1(s1, 1̄, . . . , 2m − 2)

⊓⊔

Given a Maurer–Cartan element in ĝ we can twist the differential on T̃wP .

Definition I.6 Let P be any operad and k ∈ Z be an integer. Let μ ∈
Def(Lie

(k)
∞ → P) be a Maurer–Cartan element. Then we define the μ-twisted

operad TwP as the operad constructed above with differential

dP + μ̂ · .

By construction, one has an action on TwP by the μ-twisted version of
the Lie algebra g, i.e., the Lie algebra g with the term [μ, ·] added to the
differential.

Remark I.7 Let P, k, μ be as above and suppose that a P-algebra A is given.
Let n be a commutative nilpotent or pro-nilpotent algebra, e.g., n = ǫR[[ǫ]].
Let m ∈ A ⊗ n be a Maurer–Cartan element, i.e., a Maurer–Catan element in
the hoLiek-algebra A ⊗ n. Then A ⊗ n is an algebra over the operad TwP by
the formula

p(x1, . . . , xn) =
1

j ! p(x1, . . . , xn, m, . . . , m)

for p ∈ TwP homogeneous wrt. the degree in j and a1, . . . , an ∈ A.13

13 I admit that the notation here is suboptimal. The p on the left means the element of TwP ,
while the p on the right is the underlying operation in P , which is (anti-)symmetric in its last
j slots.
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I.3. More explicit description of the action on the Graphs operad

Let us specialize the above constructions to the case P = Gra�
n . Then g =

Def(hoLien−1 → P) = fGC�
n is the “full” graph complex, containing all

possible graphs, possibly with multiple connected components, tadpoles or
multiple edges. Elements of g should be considered as (possibly infinite) linear
combinations of graphs with numbered vertices, invariant under permutation
of vertex labels. In pictures we draw a graph with black unlabelled vertices.
This should be understood as the sum of all possible numberings of the vertices,
divided by the order of the automorphism group. Note that the picture is still
inaccurate since we do not specify the overall sign. An explicit Maurer–Cartan
element μ ∈ g is given by the graph with two vertices and one edge.

By twisting one obtains the operad TwP = fGraphs�
n . The N -ary oper-

ations of TwP are (possibly infinite) linear combinations of graphs, having
two kinds of numbered vertices, “internal” and “external”. It is required that
there are exactly N external vertices and that the linear combination is invari-
ant under interchange of the labels on the internal vertices. In pictures, we
draw the internal vertices black without labels, with the convention that one
should sum up over all possible numberings, and divide by the order of the
symmetry group. From the Maurer–Cartan element μ one obtains the element
μ1 ∈ TwP(1). It is given by the graph with one external and one internal
vertex, and an edge between them. The differential on TwP has three terms:
(i) There is a term coming from the action of μ as in Lemma I.4. Concretely,
this amounts to splitting each internal vertex into two and reconnecting the
incoming edges. (ii) There is a term

∑
j (·)◦ j μ1. This amounts to splitting off

from each external vertex one internal vertex, and reconnecting the incoming
edges. (iii) There is a term μ1 ◦1 (·). This term adds a new internal vertex and
connects it to every other vertex (but one at a time). Note that if all internal
vertices are at least bivalent, the terms (iii) precisely cancel those terms from
(i) and (ii) that contain graphs with univalent internal vertices.

Next consider more generally the action of an arbitrary element γ ∈ g on
some Ŵ ∈ TwP . It again contains three terms: (i) There is a term coming
from the action as in Lemma I.4. It amounts to inserting γ at the internal
vertices of Ŵ and reconnecting the incoming edges. (ii) Build the element
γ1 ∈ TwP(1) by marking the vertex 1 in γ as external. Then there is a term
in the action stemming from

∑
j Ŵ ◦ j μ1. This amounts to inserting γ1 at all

external vertices. (iii) There is the term γ1 ◦1 Ŵ. This amount to inserting Ŵ at
the external vertex of γ1.

Remark I.8 A Hopf operad is an operad in the symmetric monoidal category
of counital coalgebras (see [32, section 5.3.5]). The operad Graphsn is a
(cocommutative) Hopf operad. Concretely, Graphsn(N ) = S(ICGn(N )[1])
may be identified with a symmetric (co)product space (more precisely the
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the Chevalley–Eilenberg complex) of the L∞ algebra of internally connected
graphs ICGn(N ), cf (10). The operad en is a (quasi-isomorphic) sub-Hopf
operad of Graphsn . Combinatorially, the action of GCn on Graphsn always
merges zero or more internally connected components into one new internally
connected component. Hence it is compatible with (i.e., a derivation with
respect to) the coproduct. Furthermore it respects the counit. Thus GCn acts
on en by Hopf operad derivations, up to homotopy.

Appendix J: The Tamarkin map grt1 → H
0(GC2) and Algorithm 2

of Sect. 9.

Part of the arguments in this subsection came out of a discussion with Pavol
Ševera.

J.1. The map

Let us first describe the map grt1 → H0(GC2), which is the universal version
of the action of grt1 on Tpoly discussed in Sect. 6.3.2. As in Sect. 6.3.1, we
have a chain of quasi-isomorphisms of operads

CN PaCD → BU t ← e2 ← hoe2. (42)

Fix a lift up to homotopy F : hoe2 → CN PaCD for now. It exists because
hoe2 is cofibrant.

The Lie algebra grt1 acts on PaCD. Let some φ ∈ grt1 be given. Its action
on F determines an element φ′ ∈ Def(hoe2 → CN PaCD). Since the map F

is a quasi-isomorphism, we may decompose φ′ into a lift l ∈ Der(hoe2) up to a
homotopy h ∈ Def(hoe2 → CN PaCD). The lift may furthermore be chosen
so that it has trivial hoLie2 part by degree reasons. So we have the following
diagram.

The (infinitesimal) automorphism l of hoe2 describes the action of the grt1-
element φ on hoe2. The composition of the homotopy h with the maps
hoLie2 → hoe2 from the left and CN PaCD → Gra from the right yields
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a degree 0 cocycle

ξ ∈ Def(hoLie2 → Gra) ∼= fGC

which represents a cohomology class in the (full) graph complex. Since
H0(fGC) ∼= H0(GC) this class corresponds to a cohomology class of M.
Kontsevich’s graph complex GC. A representative in GC may be obtained by
dropping from ξ all graphs that are not connected or have a less then triva-
lent vertex. Composing ξ with the map Gra → End(Tpoly) we recover D.
Tamarkin’s action of φ on Tpoly.

Remark J.1 Concretely, the map CN PaCD → Gra occuring above is con-
structed as follows. First there is a map CN PaCD → BU (t) to the bar
construction of the completed universal enveloping algebra of t, by forget-
ting the parenthesization. Next one projects to the abelianization, BU (t) →
BU (t/ [t, t]). For an abelian Lie algebra there is a canonical map from the
bar construction of the universal enveloping algebra to the Chevalley com-
plex, BU (t/ [t, t]) → C(t/ [t, t]). Finally one realizes that C(t/ [t, t]) ∼=
Gra. Concretely, the latter isomorphism is obtained by sending a product
ti1 j1 ∧· · ·∧ tir jr ∈ C(tn/ [tn, tn]) to a graph with n vertices and edges between
vertices i1 and j1, i2 and j2 etc.

Remark J.2 Note that the graph cohomology class [ξ ] we associate to the
element l ∈ Der(hoe2) by the above recipe is the same as the one obtained
using the map of Theorem 1.3: From l we obtain an element in Def(hoe2 → e2)

by composition with hoe2 → e2 and degree 1 element l ′ ∈ Def(hoe2 → Gra)

by further composition with e2 → Gra. Furthermore from the homotopy h

we obtain a degree zero element h′ ∈ Def(hoe2 → Gra), whose coboundary
is l ′. Using these data to compute the connecting homomorphism in the long
exact sequence from Proposition 5.5, we see that graph cocycle obtained is
just the hoLie2 part of h′, i. e., ξ . (Note that l ′ is not guaranteed to be in the
subcomplex �conn, but one may remedy by adding some exact elements with
trivial hoLie2 part.)

J.2. The lift hoe2 → CN PaCD

To obtain more information one has to consider the lift F : hoe2 → CN PaCD

of hoe2
f→ BU (t)

g
և CN PaCD. To determine F , it suffices to specify the

image of the generators, i. e., of e∨2 (N )[1] ∼= e∗2{2}(N )[1] for N = 2, 3, . . .

(respecting SN equivariance). These images are obtained by recursively (in N )
solving the equations
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d F(x) = F(dx)

g(F(x)) = f (x)

for x ∈ e∨2 (N )[1], where we denote the differentials on hoe2 and CN PaCD

both by d, abusing notation. Solutions exists since the maps f and g are quasi-
isomorphisms, but they are not unique.

Note furthermore that there are additional gradings on the objects involved:
On CN PaCD and BU (t) there is the grading by t-degree, while on hoe2
there is the grading of Sect. 4.1. The maps f , g and the differential d respect
these gradings and hence we may choose F in such a way that it respects the
additional grading as well.

We will be interested in the restrictions to Com∞ ⊂ hoe2 and hoLie2 ⊂
hoe2. Denote by m2, m3, . . . generators of Com∞ and by μ2, μ3, . . . the gen-
erators of hoLie2. The gradings are as follows. m j has cohomological degree
2 − j , while the additional degree (of Sect. 4.1) is 0. μ j has cohomological
degree 3− 2n and additional degree n − 1.

Example J.3 For N = 2 we may pick

F(m2) =
1

2
(112 + 121) F(μ2) =

1

2
(t12 ⊗ id12 + t12 ⊗ id21)

where 112 and 121 denote the two zero-chains “over” the two objects (12) and
and (21) of PaCD(2), and t12 ⊗ id12 and t12 ⊗ id21 are one-chains made out
of the identity morphisms of (12) and (21) and t12 ∈ t2 ⊂ U (t2).

Note also that the t degree of F(m2) is zero and that of F(μ2) is 1, so that
F respects also the additional degrees.

J.3. Sketch of proof of Lemma 6.10 and hence of Theorem 6.9

Defining m3 appropriately (there is a choice) one finds that F(m3) has to
satisfy the equation

d F(m3) = F(m2) ◦1 F(m2)− F(m2) ◦2 F(m2)

= 1

4
(1(12)3 + 1(21)3 + 13(12) + 13(21)

−11(23) − 11(32) − 1(23)1 − 1(32)1).

where we used the notation 1(12)3 for the zero chain above object (12)3 etc.
As remarked before, we may pick all F(m j ) to have t-degree 0.

Let us show Lemma 6.10. Pick some grt1 element φ. To obtain the cor-
responding element of Def(hoe2 → BU (t)) we have to let it act on the
lift map F : hoe2 and CN PaCD and then compose with the projection
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CN PaCD → BU (t). Note that the action on F(m j ) produces a j − 2-chain,
in which all of the j − 2 involved morphisms except for one have t-degree
0. Since BU (t) is the normalized bar construction, the image in BU (t) hence
vanishes unless j = 3.

Remark J.4 Let h be the unique morphism in PaCD(3) from any of the four
objects (i j)k, k(i j), ( j i)k or k( j i) to any of the objects i( jk), ( jk)i , (k j)i

or i(k j), where i, j, k is a permutation of 1, 2, 3. Then acting with φ on the
1-chain described by h and projecting the result to BU (t) yields the degree
−1 element φ(ti j , t jk) ∈ BU (t).

From the remark and the hexagon identity it is not hard to see that act-
ing with φ on F(m3) and projecting the result BU (t) we obtain the element
φ(t12, t23). Note that explicit knowledge of F(m3) is not required here, only
knowledge of d F(m3) as above. But φ(t12, t23) is the grt1-element we started
with, considering grt1 as a subset of t3. This shows Lemma 6.10 and hence D.
Tamarkin’s Theorem 6.9.

J.4. Comparison to Algorithm 2 of Sect. 9

We will show that the cochain γ ′ produced in Algorithm 2 of Sect. 9 agrees
with ξ as in Sect. 1 up to exact terms. Restrict the map F : hoe2 → CN PaCD

we picked to hoLie2 ⊂ hoe2 to obtain a map hoLie2 → CN PaCD. It is defined
by specifying the images of the generators μ2, μ3, . . . . They have to satisfy
equations of the form

d F(μn) = (linear combination of μ j ◦ μk f or j + k = n + 1.). (43)

The cohomological degree of F(μn) must be 3 − 2n. This means that μn is
some linear combination of chains of morphisms of PaCD of length 2n − 3.
Furthermore, as before, we may pick F such that F(μn) has t-degree n − 1.

Remark J.5 In particular, this means that a chain of morphisms of PaCD occur-
ing in μn must contain at least 2n−3−(n−1) = n−2 morphisms of t-degree
zero. In particular, mapping μn along CN PaCD → Gra yields zero, except
for n = 2.

Next consider the action of φ ∈ grt1. It produces some

a ∈ Def(hoe2 → CN PaCD)

of degree 1. Precompose with hoLie2 → hoe2 and compose with CN PaCD →
BU t to obtain some element

a′ ∈ Def(hoLie2 → BU t).
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By the last Remark one sees that a′ is determined solely by the image of μ3
under the action of x . By an explicit calculation one can see that a′ in fact agrees
with the element T3 ∈ Def(hoLie2 → Ct) ⊂ Def(hoLie2 → BU t) from the
second algorithm in Sect. 6.3.1. Consider next the homotopy h. Precompose
it with hoLie2 → hoe2 and compose with CN PaCD → BU t so as to obtain
some degree 0 element

h′ ∈ Def(hoLie2 → BU t).

Because h was the homotopy making the lower right cell in the commutative
diagram above commute, one has

a′ = dh′

where d is now the differential in Def(hoLie2 → BU t). Since a′ = T3 actually
lives in Def(hoLie2 → Ct) and Ct → BU t is a quasi-isomorphism, there is a
closed c ∈ Def(hoLie2 → BU t), such that U := h′+c ∈ Def(hoLie2 → Ct).
Since H0(Def(hoLie2 → Ct)) = 0, c is in fact exact. Taking U for the U

in Algorithm 2 of section 9, we see that the output γ ′ of that algorithm is
the image of U after composition with BU t → Gra. The image of h′ after
composition with BU t → Gra is ξ , hence

γ ′ = ξ + (exact terms).

Appendix K: A short note on the directed version of the graph complex.

One may define a directed version of the graph complex GCn by (i) taking
directed instead of undirected edges, (ii) allowing bivalent vertices and (iii)
requiring that a graph has at least one trivalent vertex.14 Call the resulting
graph complexes dGCn .

Proposition K.1

H(dGCn) ∼= H(GCn).

There is even an explicit quasi-isomorphism of dg Lie algebras

GCn → dGCn

sending an undirected graph to a sum of directed graphs, obtained by inter-
preting each edge as the sum of edges in both directions.

14 This last condition is to remove the loops as in Fig. 5 and otherwise unnecessary.
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”<>>”
”>>>”

”><” ”><”
”>”

Fig. 16 Passing from a graph with bivalent vertices to one with trivalent vertices only, but
labelled edges. Note that we cheat a little, since one has to assign some directions, by some
covention, to the edges on the right so as to interpret the labels correctly. However, for the
argument in the proof this does not matter

Proof (Proof of the Proposition) Set up a spectral sequence on the number of
non-bivalent vertices. The first differential produces one bivalent vertex. As
in the undirected case, consider a graph with bivalent vertices as one with at
least trivalent vertices and labelled edges, see Fig. 16. The first differential just
changes the labels. The resulting subcomplex is (essentially) a tensor product
the complex for one edge. The cohomology of the latter can be seen to have a
single nontrivial cohomology class, represented by the sum of edges in both
direcions (i.e., ← + →). Hence the first convergent in the spectral sequence
is GCn and hence GCn → dGCn is a quasi-isomorphism. ⊓⊔

Appendix L: The automorphism group of hoen

Let C be a coaugmented cooperad with zero differential, finite dimensional in
each arity. We will consider the cobar construction �(C) and its automorphism
group End(�(C)). First note that by functoriality of the cobar construction we
have a map from the automorphism group of the coaugmented cooperad C

φ : End(C) → End(�(C)).

Recall from [32, section 6.5] that elements of �(C) may be understood as
linear combinations of certain trees, whose vertices are decorated by elements
of C. The operadic composition is grafting of trees. Hence there is a filtration
by the number of vertices in a tree on the operad �(C). Concretely, F p�(C) is
spanned by trees with p or more vertices. By quasi-freeness any automorphism
of �(C) preserves this filtration. Clearly

C ∼= (�(C)/F2�(C))[1]

and hence we have a map

ψ : End(�(C)) → EndS−mod(C)
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where EndS−mod(C) is the group of automorphisms of the S-module C. It
is clear that ψ ◦ φ agrees with the inclusion End(C) ⊂ EndS−mod(C). We
claim that the image of ψ actually lands in End(C). Indeed any automorphism
f ∈ End(�(C)) has to respect the differential. On generators, The differen-
tial is (see [32, 6.5.5]) just the infinitesimal decomposition (see [32, 6.1.7])
on C, up to degree shifts.15 It follows that ψ( f ) has to respect this infini-
tesimal decomposition. But the latter generates all cocompositions in C and
hence ψ( f ) has to respect the cooperad structure. (The coaugmentation is also
respected by construction.) Thus we have have a decomposition

End(�(C)) = End(C) ⋉ End1(�(C))

where we abbreviate

End1(�(C)) = ker φ.

Lemma L.1 End1(�(C)) is a pro-unipotent group.

Proof Let Pn ⊂ �(C) be the suboperad spanned by trees all of whose vertices
have ≤ n children. Equivalently this sub-operad is generated by an S module
obtained from C by setting to zero all C(N ) for N > n. By quasi-freeness all
automorphisms of �(C) have to respect Pn . Similarly all automorphisms of
Pn have to respect Pn−1 ⊂ Pn etc. We hence have maps

End(Pn−1) ← End(Pn).

Clearly lim← End(Pn) ∼= End(�(C)). The filtration F from above induces
filtrations on each Pn . Denote by End1(Pn) ⊂ End(Pn) the subgroup of
automorphisms fixing all generators modulo elements of F2. Then, in the
same manner as above we have arrows

End1(Pn−1) ← End1(Pn)

and lim← End1(Pn) ∼= End1(�(C)).
We claim that each End1(Pn) is a unipotent algebraic group. Indeed by the

finiteness assumption on C it is an algebraic subgroup of some GL(Pn(n)).
Furthermore, if g ∈ End1(Pn) then (g − id) maps F pPn into F p−1Pn and
hence is a nilpotent element. ⊓⊔

One may also verify that the Lie algebra of End1(�(C)) is given by the
closed degree zero elements in Der′(�(C)) (as defined in Sect. 2).

15 Here we use that there is no differential on C.
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Remark L.2 (The special case hoen). Let us specialize to the case C = e∨n
relevant to this paper. In this case End(C) = End(e∨n ) ∼= K× × K×, the
two factors acting by rescaling the two cogenerators. No (non-trivial) such
rescaling is homotopy trivial.

References

1. Alekseev, A., Enriquez, B., Torossian, C.: Drinfeld associators, braid groups and explicit
solutions of the Kashiwara–Vergne equations. Publ. Math. Inst. Hautes Études Sci. 112,
143–189 (2010)

2. Alekseev, A., Torossian, C.: Kontsevich deformation quantization and flat connections.
Comm. Math. Phys. 300(1), 47–64 (2010)

3. Alekseev, A., Torossian, C.: The Kashiwara–Vergne conjecture and Drinfelds associators.
Ann. Math. 175(2), 415–463 (2012)

4. Arone, G., Tourtchine, V.: Graph-complexes computing the rational homotopy of high
dimensional analogues of spaces of long knots (2011). arXiv:1108.1001.

5. Arone, G., Tourtchine, V.: On the rational homology of high dimensional analogues of
spaces of long knots (2011). arXiv:1105.1576

6. Bar-Natan, D.: On Associators and the Grothendieck–Teichmüller Group I. Selecta Math.
(N.S.) 4(2), 183–212 (1998)

7. Bar-Natan, D., McKay, B.: Graph Cohomology—An Overview and Some Computations.
unpublished preprint. http://www.math.toronto.edu/drorbn/Misc/index.php

8. Brown, F.: Mixed Tate motives over Z. Ann. Math. 175(2), 949–976 (2012)
9. Calaque, D., Rossi, C.A.: Lectures on Duflo isomorphisms in Lie algebra and complex

geometry. EMS Series of Lectures in Mathematics. European Mathematical Society (EMS),
Zürich (2011)

10. Conant, J., Gerlits, F., Vogtmann, K.: Cut vertices in commutative graphs. Q. J. Math. 56(3),
321–336 (Sept. 2005)

11. Dolgushev, V.: A proof of Tsygan’s formality conjecture for an arbitrary smooth manifold
(2005). arXiv:math/0504420.

12. Dolgushev, V.: A formality theorem for Hochschild chains. Adv. Math. 200(1), 51–101
(2006)

13. Dolgushev, V., Rogers, C.L., Willwacher, T.: Kontsevich’s graph complex, GRT, and the
deformation complex of the sheaf of polyvector fields (2012). arxiv:1211.4230

14. Dolgushev, V., Willwacher, T.: Operadic twisting—with an application to Deligne’s con-
jecture (2012). arXiv:1207.2180.

15. Dolgushev, V.A., Rogers, C.L.: Notes on algebraic operads, graph complexes, and
Willwacher’s construction. In Mathematical aspects of quantization, volume 583 of Con-
temp. Math., pages 25–145. Amer. Math. Soc., Providence, RI (2012)

16. Drinfeld, V.G.: On quasitriangular quasi-Hopf algebras and on a group that is closely
connected with Gal(Q/Q). Algebr. i Anal. 2(4), 149–181 (1990)

17. Etingof, P., Kazhdan, D.: Quantization of Lie bialgebras. I. Sel. Math. 2(1), 1–41 (1996)
18. Fresse, B.: Rational homotopy automorphisms of E2-operads and the Grothendieck–

Teichmüller group. work in preparation, http://math.univ-lille1.fr/fresse/E2Rational
Automorphisms.pdf

19. Furusho, H.: Pentagon and hexagon equations. Ann. Math. 171(1), 545–556 (2010)
20. Furusho, H.: Double shuffle relation for associators. Ann. Math. 174(1), 341–360 (2011)
21. Furusho, H.: Four groups related to associators. Technical Report. Report on a talk at the

Mathematische Arbeitstagung in Bonn, June 2011 (2011). arXiv:1108.3389

123

http://arxiv.org/abs/1108.1001
http://arxiv.org/abs/1105.1576
http://www.math.toronto.edu/drorbn/Misc/index.php
http://arxiv.org/abs/math/0504420
http://arxiv.org/abs/1211.4230
http://arxiv.org/abs/1207.2180
http://math.univ-lille1.fr/fresse/E2RationalAutomorphisms.pdf
http://math.univ-lille1.fr/fresse/E2RationalAutomorphisms.pdf
http://arxiv.org/abs/1108.3389


760 T. Willwacher

22. Hinich, V.: Tamarkin’s proof of Kontsevich formality theorem. Forum Math. 15, 591–614
(2003)

23. Kontsevich, M.: Formal (non)commutative symplectic geometry. In Proceedings of the I.
M. Gelfand seminar 1990–1992, pp. 173–188. Birkhauser (1993).

24. Kontsevich, M.: Feynman diagrams and low-dimensional topology. Progr. Math., 120:97–
121. First European Congress of Mathematics, Vol. II, (Paris, 1992) (1994)

25. Kontsevich, M.: Formality conjecture. In Sternheimer, D. et al. (eds.). Deformation Theory
and Symplectic Geometry, pp. 139–156 (1997).

26. Kontsevich, M.: Operads and motives in deformation quantization. Lett. Math. Phys. 48,
35–72 (1999)

27. Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66(3),
157–216 (2003)

28. Kontsevich, M., Soibelman, Y.: Deformations of algebras over operads and the Deligne
conjecture. In Conférence Moshé Flato 1999, Vol. I (Dijon), volume 21 of Math. Phys.
Stud., pp. 255–307. Kluwer Acad. Publ., Dordrecht (2000)

29. Lambrechts, P., Turchin, V.: Homotopy graph-complex for configuration and knot spaces.
Trans. Am. Math. Soc. 361(1), 207–222 (2009)

30. Lambrechts, P., Volic, I.: Formality of the little N-disks operad (2008). arXiv:0808.0457.
31. Le, T.T.Q., Murakami, J.: Kontsevich’s integral for the Kauffman polynomial. Nagoya

Math. J. 142, 39–65 (1996)
32. Loday, J.-L., Vallette, B.: Algebraic operads. Number 346 in Grundlehren der mathema-

tischen Wissenschaften. Springer, Heidelberg (2012).
33. Merkulov, S., Vallette, B.: Deformation theory of representations of prop(erad)s. II. J. Reine

Angew. Math. 636, 123–174 (2009)
34. Paljug, B.: Action of derived automorphisms on infinity-morphisms (2013).

arXiv:1305.4699.
35. Schneps, L.: The Grothendieck-Teichmüller group gt: a survey. In Geometric Galois

actions, 1, volume 242 of London Math. Soc. Lecture Note Ser., pp. 183–203. Cambridge
Univ. Press, Cambridge (1997)

36. Schneps, L.: Double shuffle and Kashiwara–Vergne Lie algebras. J. Algeb. 367, 54–74
(2012)

37. Shoikhet, B.: Vanishing of the Kontsevich integrals of the wheels. Lett. Math. Phys. 56(2),
141–149 (2001). arXiv:math/0007080

38. Tamarkin, D.: Another proof of M. Kontsevich formality theorem (1998).
arXiv:math/9803025.

39. Tamarkin, D.: Action of the Grothendieck–Teichmueller group on the operad of Gersten-
haber algebras (2002). arXiv:math/0202039.

40. Tamarkin, D.: Quantization of Lie bilagebras via the formality of the operad of little disks.
IRMA Lect. Math. Theor. Phys. 1, 203–236 (2002)

41. Tamarkin, D.E.: Formality of chain operad of little discs. Lett. Math. Phys. 66, 65–72
(2003). arXiv:math/9809164

42. Turchin, V.: Hodge-type decomposition in the homology of long knots. J. Topol. 3(3),
487–534 (2010)

43. Ševera, P., Willwacher, T.: The cubical complex of a permutation group representation - or
however you want to call it (2011). arXiv:1103.3283.

44. Ševera, P., Willwacher, T.: Equivalence of formalities of the little discs operad. Duke Math.
J. 160(1), 175–206 (2011)

45. van der Laan, P.P.I.:. Operads up to homotopy and deformations of operad maps (2002).
math/0208041.

46. Willwacher, T.: A Note on Br-infinity and KS-infinity formality (2011). arXiv:1109.3520.
47. Willwacher, T.: Stable cohomology of polyvector fields (2011). arxiv:1110.3762.

123

http://arxiv.org/abs/0808.0457
http://arxiv.org/abs/1305.4699
http://arxiv.org/abs/math/0007080
http://arxiv.org/abs/math/9803025
http://arxiv.org/abs/math/0202039
http://arxiv.org/abs/math/9809164
http://arxiv.org/abs/1103.3283
http://arxiv.org/abs/math/0208041
http://arxiv.org/abs/1109.3520
http://arxiv.org/abs/1110.3762

	M. Kontsevich's graph complex and the Grothendieck--Teichmüller Lie algebra
	Abstract
	1 Introduction
	1.1 Structure of the paper

	2 Notation and conventions
	3 Graph operads and graph complexes
	3.1 Action on polyvector fields and M. Kontsevich's motivation
	3.2 The (twisted) operads Graphsn

	4 A spectral sequence for Def(hoen -> P)
	4.1 A grading on en and a filtration on Def(hoen-> P)
	4.2 The special case P=Graphs n whl
	4.2.1 The connected part
	4.2.2 A closer look at fCconn

	4.3 The special case P=Gra n whl

	5 The map between GCn and Der(hoen)
	5.1 Reduction to the connected part
	5.2 The first description of the map
	5.2.1 Explicit form

	5.3 The second description of the map
	5.4 The two maps agree
	5.5 Proof of Theorem 1.3

	6 The Grothendieck--Teichmüller Lie algebra
	6.1 The standard definition
	6.2 Definition as ``Harrison'' cohomology of t
	6.3 Tamarkin's grt-action (up to homotopy) on hoe2 and on Tpoly 
	6.3.1 The action on hoe2
	6.3.2 The action on Tpoly

	6.4 The map from the graph cohomology to grt
	6.4.1 Factoring through C


	7 Der(hoe2) and grt
	8 The proof of Theorems 1.1 and 1.2
	9 Explicit form of the (conjectural) generators
	10 Applications
	10.1 The action of the graph complex on formality morphisms
	10.2 Recollection: D. Tamarkin's proof of the Formality Theorem and the GRT1 action
	10.3 Relation of the Tamarkin and Kontsevich formality morphisms
	10.4 An answer to a question of B. Tsygan
	10.5 Globalization and a proof of a result announced by M. Kontsevich

	Acknowledgments
	Appendix A: Harrison complex of the cofree coalgebra
	Appendix B: The deformation complex of n-algebras
	B.1. The (co)operads en and env
	B.2. hoen and a(nother) filtration on the deformation complex
	B.3. A more concrete description of the differential d+
	B.4. The cohomology is concentrated in degree k1=0

	Appendix C: Deformation complexes
	C.1. A Graphical description of the differential

	Appendix D: Sketch of proof of Lemma 5.7
	Appendix E: (Re-)Derivation of Furusho's result
	Appendix F: The one vertex irreducible part of GCn is quasi-isomorphic to GCn
	Appendix G: A note on the convergence of spectral sequences
	Appendix H: t, grt, sder
	Appendix I: Twisting of operads
	I.1. A Foreword
	I.2. The construction
	I.3. More explicit description of the action on the Graphs operad

	Appendix J: The Tamarkin map grt to H(GC) and Algorithm 2  of Sect. 9. 
	J.1. The map
	J.2. The lift hoe2 to CNPaCD
	J.3. Sketch of proof of Lemma 6.10 and hence of Theorem 6.9
	J.4. Comparison to Algorithm 2 of Sect. 9

	Appendix K: A short note on the directed version of the graph complex.
	Appendix L: The automorphism group of hoen
	References


