Abstract
Resonant and off-resonant mid-infrared pump–probe spectroscopy is used to measure the vibrational dynamics of CO adsorbed to thin (0.2 nm, 2 nm, and 10 nm) heterogeneous Pt layers in an aqueous solution. The transient signals observed with resonant pumping are dominated by vibrational relaxation of the CO internal stretch vibration with a lifetime of T1 ∼ 3 ps in all cases. Off-resonant pumping suppresses that contribution to the signal and singles out a signal, which is attributed to heating of the metal layer as well as transient desorption of the CO molecules. Due to the small photon energy (0.2 eV) used as pump pulses, the mechanism of desorption must be thermal, in which case the desorption yield depends exclusively on the fluence of absorbed light and not its wavelength. The thin Pt layers facilitate CO desorption, despite a relatively low pump pulse fluence, as they concentrate the absorbed energy in a small volume.