Header

UZH-Logo

Maintenance Infos

Comparative velocity investigations in cerebral arteries and aneurysms: 3D phase-contrast MR angiography, laser Doppler velocimetry and computational fluid dynamics


Hollnagel, D I; Summers, P E; Poulikakos, D; Kollias, S S (2009). Comparative velocity investigations in cerebral arteries and aneurysms: 3D phase-contrast MR angiography, laser Doppler velocimetry and computational fluid dynamics. NMR in Biomedicine, 22(8):795-888.

Abstract

In western populations, cerebral aneurysms develop in approximately 4% of humans and they involve the risk of rupture. Blood flow patterns are of interest for understanding the pathogenesis of the lesions and may eventually contribute to deciding on the most efficient treatment procedure for a specific patient. Velocity mapping with phase-contrast magnetic resonance angiography (PC-MRA) is a non-invasive method for performing in vivo measurements on blood velocity. Several hemodynamic properties can either be derived directly from these measurements or a flow field with all its parameters can be simulated on the basis of the measurements. For both approaches, the accuracy of the PC-MRA data and subsequent modeling must be validated. Therefore, a realistic transient flow field in a well-defined patient-specific silicone phantom was investigated. Velocity investigations with PC-MRA in a 3 Tesla MR scanner, laser Doppler velocimetry (LDV) and computational fluid dynamics (CFD) were performed in the same model under equal flow conditions and compared to each other. The results showed that PC-MRA was qualitatively similar to LDV and CFD, but showed notable quantitative differences, while LDV and CFD agreed well. The accuracy of velocity quantification by PC-MRA was best in straight artery regions with the measurement plane being perpendicular to the primary flow direction. The accuracy decreased in regions with disturbed flow and in cases where the measurement plane was not perpendicular to the primary flow. Due to these findings, it is appropriate to use PC-MRA as the inlet and outlet conditions for numerical simulations to calculate velocities and shear stresses in disturbed regions like aneurysms, rather than derive these values directly from the full PC-MRA measured velocity field. (c) 2009 John Wiley & Sons, Ltd.

Abstract

In western populations, cerebral aneurysms develop in approximately 4% of humans and they involve the risk of rupture. Blood flow patterns are of interest for understanding the pathogenesis of the lesions and may eventually contribute to deciding on the most efficient treatment procedure for a specific patient. Velocity mapping with phase-contrast magnetic resonance angiography (PC-MRA) is a non-invasive method for performing in vivo measurements on blood velocity. Several hemodynamic properties can either be derived directly from these measurements or a flow field with all its parameters can be simulated on the basis of the measurements. For both approaches, the accuracy of the PC-MRA data and subsequent modeling must be validated. Therefore, a realistic transient flow field in a well-defined patient-specific silicone phantom was investigated. Velocity investigations with PC-MRA in a 3 Tesla MR scanner, laser Doppler velocimetry (LDV) and computational fluid dynamics (CFD) were performed in the same model under equal flow conditions and compared to each other. The results showed that PC-MRA was qualitatively similar to LDV and CFD, but showed notable quantitative differences, while LDV and CFD agreed well. The accuracy of velocity quantification by PC-MRA was best in straight artery regions with the measurement plane being perpendicular to the primary flow direction. The accuracy decreased in regions with disturbed flow and in cases where the measurement plane was not perpendicular to the primary flow. Due to these findings, it is appropriate to use PC-MRA as the inlet and outlet conditions for numerical simulations to calculate velocities and shear stresses in disturbed regions like aneurysms, rather than derive these values directly from the full PC-MRA measured velocity field. (c) 2009 John Wiley & Sons, Ltd.

Statistics

Citations

Dimensions.ai Metrics
58 citations in Web of Science®
64 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 29 Sep 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neuroradiology
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > Molecular Medicine
Health Sciences > Radiology, Nuclear Medicine and Imaging
Physical Sciences > Spectroscopy
Language:English
Date:October 2009
Deposited On:29 Sep 2009 11:57
Last Modified:03 Dec 2023 02:40
Publisher:Wiley-Blackwell
ISSN:0952-3480
Additional Information:The definitive version is available at www.blackwell-synergy.com
OA Status:Closed
Publisher DOI:https://doi.org/10.1002/nbm.1389
PubMed ID:19412933