Header

UZH-Logo

Maintenance Infos

Effect of Titanium and Zirconium Oxide Microparticles on Pro-Inflammatory Response in Human Macrophages under Induced Sterile Inflammation: An In Vitro Study


Ramenzoni, Liza L; Flückiger, Laura B; Attin, Thomas; Schmidlin, Patrick R (2021). Effect of Titanium and Zirconium Oxide Microparticles on Pro-Inflammatory Response in Human Macrophages under Induced Sterile Inflammation: An In Vitro Study. Materials, 14(15):4166.

Abstract

The wear-debris particles released by shearing forces during dental implant insertion may contribute to inflammatory reactions or osteolysis associated with peri-implantitis by stimulating inflammasome-activation. The study aim was to examine cytotoxic and pro-inflammatory effects of titanium (TiO2) and zirconia (ZrO2) particles in macrophages regarding their nature/particle concentration over time under sterile lipopolysaccharide (LPS) inflammation. Macrophages were exposed to TiO2 and ZrO2 particles (≤5 µm) in cell culture. Dental glass was used as inert control and LPS (1 μg/mL) was used to promote sterile inflammation. Cytotoxicity was determined using MTT assays and cytokine expression of TNF-α, IL-1β and IL-6 was evaluated by qRT-PCR. Data were analyzed using Student's t-test and ANOVA (p ≤ 0.05). Cytotoxicity was significantly increased when exposed to higher concentrations of glass, TiO2 and ZrO2 (≥107 particles/mL) compared to controls (p ≤ 0.05). Macrophages challenged with TiO2 particles expressed up to ≈3.5-fold higher upregulation than ZrO2 from 12 to 48 h. However, when exposed to LPS, TiO2 and ZrO2 particle-induced pro-inflammatory gene expression was further enhanced (p ≤ 0.05). Our data suggest that ZrO2 particles produce less toxicity/inflammatory cytokine production than TiO2. The present study shows that the biological reactivity of TiO2 and ZrO2 depends on the type and concentration of particles in a time-dependent manner.

Keywords: cytokines; inflammation; macrophage; peri-implantitis; titanium; zirconia.

Abstract

The wear-debris particles released by shearing forces during dental implant insertion may contribute to inflammatory reactions or osteolysis associated with peri-implantitis by stimulating inflammasome-activation. The study aim was to examine cytotoxic and pro-inflammatory effects of titanium (TiO2) and zirconia (ZrO2) particles in macrophages regarding their nature/particle concentration over time under sterile lipopolysaccharide (LPS) inflammation. Macrophages were exposed to TiO2 and ZrO2 particles (≤5 µm) in cell culture. Dental glass was used as inert control and LPS (1 μg/mL) was used to promote sterile inflammation. Cytotoxicity was determined using MTT assays and cytokine expression of TNF-α, IL-1β and IL-6 was evaluated by qRT-PCR. Data were analyzed using Student's t-test and ANOVA (p ≤ 0.05). Cytotoxicity was significantly increased when exposed to higher concentrations of glass, TiO2 and ZrO2 (≥107 particles/mL) compared to controls (p ≤ 0.05). Macrophages challenged with TiO2 particles expressed up to ≈3.5-fold higher upregulation than ZrO2 from 12 to 48 h. However, when exposed to LPS, TiO2 and ZrO2 particle-induced pro-inflammatory gene expression was further enhanced (p ≤ 0.05). Our data suggest that ZrO2 particles produce less toxicity/inflammatory cytokine production than TiO2. The present study shows that the biological reactivity of TiO2 and ZrO2 depends on the type and concentration of particles in a time-dependent manner.

Keywords: cytokines; inflammation; macrophage; peri-implantitis; titanium; zirconia.

Statistics

Citations

Dimensions.ai Metrics
14 citations in Web of Science®
14 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

14 downloads since deposited on 28 Oct 2021
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Clinic of Conservative and Preventive Dentistry
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Physical Sciences > General Materials Science
Physical Sciences > Condensed Matter Physics
Language:English
Date:27 July 2021
Deposited On:28 Oct 2021 09:55
Last Modified:26 May 2024 01:46
Publisher:MDPI Publishing
ISSN:1996-1944
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.3390/ma14154166
PubMed ID:34361359
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)