Header

UZH-Logo

Maintenance Infos

Debris Removal Using a Hydroxyapatite Nanoparticle-Containing Solution (Vector Polish) with Sonic or Ultrasonic Agitation


Hülsmann, Michael; Beckmann, Christoph; Baxter, Steffi (2021). Debris Removal Using a Hydroxyapatite Nanoparticle-Containing Solution (Vector Polish) with Sonic or Ultrasonic Agitation. Materials, 14(16):4750.

Abstract

Chemomechanical preparation of the root canal system is considered to be the most important part of root canal treatment, including both mechanical removal of tissue remnants and dentine chips, and chemical elimination of biofilm and microorganisms. A number of different solutions and agitation techniques have been proposed for that purpose. It was the aim of the present study to investigate whether root canal cleanliness can be improved by using a hydroxyapatite nanoparticle-containing solution with and without sonic or ultrasonic agitation. Seventy-four single-rooted teeth were divided into four experimental groups (n = 15) and two control groups (n = 7). All teeth were split longitudinally and a groove and three holes were cut into the root canal wall and filled with dentinal debris. Final irrigation was performed using sodium hypochlorite or a hydroxyapatite nanoparticle-containing solution (Vector polish) activated with a sonically or an ultrasonically driven endodontic file. Two calibrated investigators rated the remaining debris using a four-score scale. The results were analyzed using a non-parametric test with α < 0.05. Sonic and ultrasonic irrigation with sodium hypochlorite cleaned the grooves and holes well from debris. The hydroxyapatite nanoparticles activated by a sonic file cleaned grooves and holes equally well. Ultrasonically activated nanoparticles performance was clearly inferior. The syringe control-group left large amounts of debris in grooves and holes. The use of the hydroxyapatite nanoparticles used in this study did not improve removal of debris.

Abstract

Chemomechanical preparation of the root canal system is considered to be the most important part of root canal treatment, including both mechanical removal of tissue remnants and dentine chips, and chemical elimination of biofilm and microorganisms. A number of different solutions and agitation techniques have been proposed for that purpose. It was the aim of the present study to investigate whether root canal cleanliness can be improved by using a hydroxyapatite nanoparticle-containing solution with and without sonic or ultrasonic agitation. Seventy-four single-rooted teeth were divided into four experimental groups (n = 15) and two control groups (n = 7). All teeth were split longitudinally and a groove and three holes were cut into the root canal wall and filled with dentinal debris. Final irrigation was performed using sodium hypochlorite or a hydroxyapatite nanoparticle-containing solution (Vector polish) activated with a sonically or an ultrasonically driven endodontic file. Two calibrated investigators rated the remaining debris using a four-score scale. The results were analyzed using a non-parametric test with α < 0.05. Sonic and ultrasonic irrigation with sodium hypochlorite cleaned the grooves and holes well from debris. The hydroxyapatite nanoparticles activated by a sonic file cleaned grooves and holes equally well. Ultrasonically activated nanoparticles performance was clearly inferior. The syringe control-group left large amounts of debris in grooves and holes. The use of the hydroxyapatite nanoparticles used in this study did not improve removal of debris.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

17 downloads since deposited on 10 Nov 2021
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Clinic of Conservative and Preventive Dentistry
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Physical Sciences > General Materials Science
Physical Sciences > Condensed Matter Physics
Language:English
Date:23 August 2021
Deposited On:10 Nov 2021 14:49
Last Modified:26 Apr 2024 01:36
Publisher:MDPI Publishing
ISSN:1996-1944
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.3390/ma14164750
PubMed ID:34443271
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)