Header

UZH-Logo

Maintenance Infos

Dynamic Effects and Hydrogen Bonding in Mixed-Halide Perovskite Solar Cell Absorbers


Wilks, Regan G; Erbing, Axel; Sadoughi, Golnaz; Starr, David E; Handick, Evelyn; Meyer, Frank; Benkert, Andreas; Iannuzzi, Marcella; et al (2021). Dynamic Effects and Hydrogen Bonding in Mixed-Halide Perovskite Solar Cell Absorbers. Journal of Physical Chemistry Letters, 12(16):3885-3890.

Abstract

The organic component (methylammonium) of CH3NH3PbI3–xClx-based perovskites shows electronic hybridization with the inorganic framework via H-bonding between N and I sites. Femtosecond dynamics induced by core excitation are shown to strongly influence the measured X-ray emission spectra and the resonant inelastic soft X-ray scattering of the organic components. The N K core excitation leads to a greatly increased N–H bond length that modifies and strengthens the interaction with the inorganic framework compared to that in the ground state. The study indicates that excited-state dynamics must be accounted for in spectroscopic studies of this perovskite solar cell material, and the organic–inorganic hybridization interaction suggests new avenues for probing the electronic structure of this class of materials. It is incidentally shown that beam damage to the methylamine component can be avoided by moving the sample under the soft X-ray beam to minimize exposure and that this procedure is necessary to prevent the creation of experimental artifacts.

Abstract

The organic component (methylammonium) of CH3NH3PbI3–xClx-based perovskites shows electronic hybridization with the inorganic framework via H-bonding between N and I sites. Femtosecond dynamics induced by core excitation are shown to strongly influence the measured X-ray emission spectra and the resonant inelastic soft X-ray scattering of the organic components. The N K core excitation leads to a greatly increased N–H bond length that modifies and strengthens the interaction with the inorganic framework compared to that in the ground state. The study indicates that excited-state dynamics must be accounted for in spectroscopic studies of this perovskite solar cell material, and the organic–inorganic hybridization interaction suggests new avenues for probing the electronic structure of this class of materials. It is incidentally shown that beam damage to the methylamine component can be avoided by moving the sample under the soft X-ray beam to minimize exposure and that this procedure is necessary to prevent the creation of experimental artifacts.

Statistics

Citations

Dimensions.ai Metrics
12 citations in Web of Science®
12 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Scopus Subject Areas:Physical Sciences > General Materials Science
Physical Sciences > Physical and Theoretical Chemistry
Uncontrolled Keywords:General Materials Science, Physical and Theoretical Chemistry
Language:English
Date:29 April 2021
Deposited On:15 Nov 2021 09:33
Last Modified:27 Mar 2024 02:53
Publisher:American Chemical Society (ACS)
ISSN:1948-7185
OA Status:Closed
Publisher DOI:https://doi.org/10.1021/acs.jpclett.1c00745
Full text not available from this repository.