Header

UZH-Logo

Maintenance Infos

Vascular graph model to simulate the cerebral blood flow in realistic vascular networks


Reichold, J; Stampanoni, M; Lena Keller, A; Buck, A; Jenny, P; Weber, B (2009). Vascular graph model to simulate the cerebral blood flow in realistic vascular networks. Journal of Cerebral Blood Flow and Metabolism, 29(8):1429-1443.

Abstract

At its most fundamental level, cerebral blood flow (CBF) may be modeled as fluid flow driven through a network of resistors by pressure gradients. The composition of the blood as well as the cross-sectional area and length of a vessel are the major determinants of its resistance to flow. Here, we introduce a vascular graph modeling framework based on these principles that can compute blood pressure, flow and scalar transport in realistic vascular networks. By embedding the network in a computational grid representative of brain tissue, the interaction between the two compartments can be captured in a truly three-dimensional manner and may be applied, among others, to simulate oxygen extraction from the vessels. Moreover, we have devised an upscaling algorithm that significantly reduces the computational expense and eliminates the need for detailed knowledge on the topology of the capillary bed. The vascular graph framework has been applied to investigate the effect of local vascular dilation and occlusion on the flow in the surrounding network.

Abstract

At its most fundamental level, cerebral blood flow (CBF) may be modeled as fluid flow driven through a network of resistors by pressure gradients. The composition of the blood as well as the cross-sectional area and length of a vessel are the major determinants of its resistance to flow. Here, we introduce a vascular graph modeling framework based on these principles that can compute blood pressure, flow and scalar transport in realistic vascular networks. By embedding the network in a computational grid representative of brain tissue, the interaction between the two compartments can be captured in a truly three-dimensional manner and may be applied, among others, to simulate oxygen extraction from the vessels. Moreover, we have devised an upscaling algorithm that significantly reduces the computational expense and eliminates the need for detailed knowledge on the topology of the capillary bed. The vascular graph framework has been applied to investigate the effect of local vascular dilation and occlusion on the flow in the surrounding network.

Statistics

Citations

Dimensions.ai Metrics
125 citations in Web of Science®
126 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

311 downloads since deposited on 30 Sep 2009
54 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology

04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:570 Life sciences; biology
170 Ethics
610 Medicine & health
Scopus Subject Areas:Life Sciences > Neurology
Health Sciences > Neurology (clinical)
Health Sciences > Cardiology and Cardiovascular Medicine
Language:English
Date:August 2009
Deposited On:30 Sep 2009 12:33
Last Modified:23 Jan 2022 14:28
Publisher:Nature Publishing Group
ISSN:0271-678X
OA Status:Hybrid
Publisher DOI:https://doi.org/10.1038/jcbfm.2009.58
PubMed ID:19436317