Header

UZH-Logo

Maintenance Infos

Necrotizing Gingivitis: Microbial Diversity and Quantification of Protein Secretion in Necrotizing Gingivitis


Gerhard, Nicolas; Thurnheer, Thomas; Kreutzer, Susanne; Gmür, Rudolf Dominik; Attin, Thomas; Russo, Giancarlo; Karygianni, Lamprini (2021). Necrotizing Gingivitis: Microbial Diversity and Quantification of Protein Secretion in Necrotizing Gingivitis. Antibiotics, 10(10):1197.

Abstract

Necrotizing gingivitis (NG) is a necrotizing periodontal disease that differs from chronic gingivitis (CG). To date, both the microbiological causes and the involved host cytokine response of NG still remain unclear. Here, we investigated corresponding interdental plaque and serum samples from two groups of Chinese patients with CG (n = 21) or NG (n = 21). The microbiota were studied by 16S rRNA Illumina MiSeq sequencing of the microbial metagenome and by assessing quantitatively the abundance of the phylum Bacteroidetes, the genus Prevotella and the species T. forsythia, P. endodontalis, and P. gingivalis using fluorescence in situ hybridization (FISH). With respect to the associated host response, the levels of 30 inflammatory mediators were quantified by multiplex immunoassay analysis. Differential microbial abundance analysis of the two disease groups revealed at the phylum level that Proteobacteria accounted for 67% of the differentially abundant organisms, followed by organisms of Firmicutes (21%) and Actinobacteria (9%). At the species level, significant differences in abundance were seen for 75 species of which 58 species were significantly more abundant in CG patients. Notably, the FISH analysis revealed that Bacteroidetes was the most prevalent phylum in NG. The multiplex cytokine assay showed significant quantitative differences between the disease groups for eight analytes (GM-CSF, G-CSF, IFN-α, IL-4, IL-13, TNF-α, MIG, and HGF). The G-CSF was found to be the most significantly increased inflammatory protein marker in NG. The next-generation sequencing (NGS) data supported the understanding of NG as a multi-microbial infection with distinct differences to CG in regard to the microbial composition.

Keywords: 16s rRNA; cytokines; fluorescence in situ hybridization (FISH); microbial metagenome; multiplex bead array assays (MBAA); necrotizing gingivitis.

Abstract

Necrotizing gingivitis (NG) is a necrotizing periodontal disease that differs from chronic gingivitis (CG). To date, both the microbiological causes and the involved host cytokine response of NG still remain unclear. Here, we investigated corresponding interdental plaque and serum samples from two groups of Chinese patients with CG (n = 21) or NG (n = 21). The microbiota were studied by 16S rRNA Illumina MiSeq sequencing of the microbial metagenome and by assessing quantitatively the abundance of the phylum Bacteroidetes, the genus Prevotella and the species T. forsythia, P. endodontalis, and P. gingivalis using fluorescence in situ hybridization (FISH). With respect to the associated host response, the levels of 30 inflammatory mediators were quantified by multiplex immunoassay analysis. Differential microbial abundance analysis of the two disease groups revealed at the phylum level that Proteobacteria accounted for 67% of the differentially abundant organisms, followed by organisms of Firmicutes (21%) and Actinobacteria (9%). At the species level, significant differences in abundance were seen for 75 species of which 58 species were significantly more abundant in CG patients. Notably, the FISH analysis revealed that Bacteroidetes was the most prevalent phylum in NG. The multiplex cytokine assay showed significant quantitative differences between the disease groups for eight analytes (GM-CSF, G-CSF, IFN-α, IL-4, IL-13, TNF-α, MIG, and HGF). The G-CSF was found to be the most significantly increased inflammatory protein marker in NG. The next-generation sequencing (NGS) data supported the understanding of NG as a multi-microbial infection with distinct differences to CG in regard to the microbial composition.

Keywords: 16s rRNA; cytokines; fluorescence in situ hybridization (FISH); microbial metagenome; multiplex bead array assays (MBAA); necrotizing gingivitis.

Statistics

Citations

Altmetrics

Downloads

73 downloads since deposited on 30 Nov 2021
28 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Clinic of Conservative and Preventive Dentistry
04 Faculty of Medicine > Functional Genomics Center Zurich
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > Microbiology
Life Sciences > Biochemistry
Life Sciences > General Pharmacology, Toxicology and Pharmaceutics
Health Sciences > Microbiology (medical)
Health Sciences > Infectious Diseases
Health Sciences > Pharmacology (medical)
Uncontrolled Keywords:Pharmacology (medical), Infectious Diseases, Microbiology (medical), General Pharmacology, Toxicology and Pharmaceutics, Biochemistry, Microbiology
Language:English
Date:1 October 2021
Deposited On:30 Nov 2021 12:51
Last Modified:26 Apr 2024 01:36
Publisher:MDPI Publishing
ISSN:2079-6382
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.3390/antibiotics10101197
Related URLs:https://www.zora.uzh.ch/id/eprint/221695/
PubMed ID:34680779
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)