Header

UZH-Logo

Maintenance Infos

Effects of plant diversity on invertebrate herbivory in experimental grassland.


Scherber, C; Mwangi, P N; Temperton, V M; Roscher, C; Schumacher, J; Schmid, B; Weisser, W W (2006). Effects of plant diversity on invertebrate herbivory in experimental grassland. Oecologia, 147(3):489-500.

Abstract

The rate at which a plant species is attacked by invertebrate herbivores has been hypothesized to depend on plant species richness, yet empirical evidence is scarce. Current theory predicts higher herbivore damage in monocultures than in species-rich mixtures. We quantified herbivore damage by insects and molluscs to plants in experimental plots established in 2002 from a species pool of 60 species of Central European Arrhenatherum grasslands. Plots differed in plant species richness (1, 2, 4, 8, 16, 60 species), number of functional groups (1, 2, 3, 4), functional group and species composition. We estimated herbivore damage by insects and molluscs at the level of transplanted plant individuals ("phytometer" species Plantago lanceolata, Trifolium pratense, Rumex acetosa) and of the entire plant community during 2003 and 2004. In contrast to previous studies, our design allows specific predictions about the relative contributions of functional diversity, plant functional identity, and species richness in relation to herbivory. Additionally, the phytometer approach is new to biodiversity-herbivory studies, allowing estimates of species-specific herbivory rates within the larger biodiversity-ecosystem functioning context. Herbivory in phytometers and experimental communities tended to increase with plant species richness and the number of plant functional groups, but the effects were rarely significant. Herbivory in phytometers was in some cases positively correlated with community biomass or leaf area index. The most important factor influencing invertebrate herbivory was the presence of particular plant functional groups. Legume (grass) presence strongly increased (decreased) herbivory at the community level. The opposite pattern was found for herbivory in T. pratense phytometers. We conclude that (1) plant species richness is much less important than previously thought and (2) plant functional identity is a much better predictor of invertebrate herbivory in temperate grassland ecosystems.

Abstract

The rate at which a plant species is attacked by invertebrate herbivores has been hypothesized to depend on plant species richness, yet empirical evidence is scarce. Current theory predicts higher herbivore damage in monocultures than in species-rich mixtures. We quantified herbivore damage by insects and molluscs to plants in experimental plots established in 2002 from a species pool of 60 species of Central European Arrhenatherum grasslands. Plots differed in plant species richness (1, 2, 4, 8, 16, 60 species), number of functional groups (1, 2, 3, 4), functional group and species composition. We estimated herbivore damage by insects and molluscs at the level of transplanted plant individuals ("phytometer" species Plantago lanceolata, Trifolium pratense, Rumex acetosa) and of the entire plant community during 2003 and 2004. In contrast to previous studies, our design allows specific predictions about the relative contributions of functional diversity, plant functional identity, and species richness in relation to herbivory. Additionally, the phytometer approach is new to biodiversity-herbivory studies, allowing estimates of species-specific herbivory rates within the larger biodiversity-ecosystem functioning context. Herbivory in phytometers and experimental communities tended to increase with plant species richness and the number of plant functional groups, but the effects were rarely significant. Herbivory in phytometers was in some cases positively correlated with community biomass or leaf area index. The most important factor influencing invertebrate herbivory was the presence of particular plant functional groups. Legume (grass) presence strongly increased (decreased) herbivory at the community level. The opposite pattern was found for herbivory in T. pratense phytometers. We conclude that (1) plant species richness is much less important than previously thought and (2) plant functional identity is a much better predictor of invertebrate herbivory in temperate grassland ecosystems.

Statistics

Citations

Dimensions.ai Metrics
83 citations in Web of Science®
88 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Scopus Subject Areas:Life Sciences > Ecology, Evolution, Behavior and Systematics
Uncontrolled Keywords:biodiversity, ecosystem functioning, trophic interactions
Language:English
Date:1 March 2006
Deposited On:11 Feb 2008 12:28
Last Modified:21 Jan 2022 14:13
Publisher:Springer
ISSN:0029-8549
OA Status:Closed
Publisher DOI:https://doi.org/10.1007/s00442-005-0281-3
PubMed ID:16231192
Full text not available from this repository.