Header

UZH-Logo

Maintenance Infos

Decontaminating N95/FFP2 masks for reuse during the COVID-19 epidemic: a systematic review


Peters, Alexandra; Lotfinejad, Nasim; Palomo, Rafael; Zingg, Walter; Parneix, Pierre; Ney, Hervé; Pittet, Didier (2021). Decontaminating N95/FFP2 masks for reuse during the COVID-19 epidemic: a systematic review. Antimicrobial Resistance and Infection Control, 10:144.

Abstract

BACKGROUND

With the current COVID-19 pandemic, many healthcare facilities have been lacking a steady supply of filtering facepiece respirators. To better address this challenge, the decontamination and reuse of these respirators is a strategy that has been studied by an increasing number of institutions during the COVID-19 pandemic.

METHODS

We conducted a systematic literature review in PubMed, PubMed Central, Embase, and Google Scholar. Studies were eligible when (electronically or in print) up to 17 June 2020, and published in English, French, German, or Spanish. The primary outcome was reduction of test viruses or test bacteria by log3 for disinfection and log6 for sterilization. Secondary outcome was physical integrity (fit/filtration/degradation) of the respirators after reprocessing. Materials from the grey literature, including an unpublished study were added to the findings.

FINDINGS

Of 938 retrieved studies, 35 studies were included in the analysis with 70 individual tests conducted. 17 methods of decontamination were found, included the use of liquids (detergent, benzalkonium chloride, hypochlorite, or ethanol), gases (hydrogen peroxide, ozone, peracetic acid or ethylene oxide), heat (either moist with or without pressure or dry heat), or ultra violet radiation (UVA and UVGI); either alone or in combination. Ethylene oxide, gaseous hydrogen peroxide (with or without peracetic acid), peracetic acid dry fogging system, microwave-generated moist heat, and steam seem to be the most promising methods on decontamination efficacy, physical integrity and filtration capacity.

INTERPRETATION

A number of methods can be used for N95/FFP2 mask reprocessing in case of shortage, helping to keep healthcare workers and patients safe. However, the selection of disinfection or sterilization methods must take into account local availability and turnover capacity as well as the manufacturer; meaning that some methods work better on specific models from specific manufacturers.

SYSTEMATIC REGISTRATION NUMBER

CRD42020193309.

Abstract

BACKGROUND

With the current COVID-19 pandemic, many healthcare facilities have been lacking a steady supply of filtering facepiece respirators. To better address this challenge, the decontamination and reuse of these respirators is a strategy that has been studied by an increasing number of institutions during the COVID-19 pandemic.

METHODS

We conducted a systematic literature review in PubMed, PubMed Central, Embase, and Google Scholar. Studies were eligible when (electronically or in print) up to 17 June 2020, and published in English, French, German, or Spanish. The primary outcome was reduction of test viruses or test bacteria by log3 for disinfection and log6 for sterilization. Secondary outcome was physical integrity (fit/filtration/degradation) of the respirators after reprocessing. Materials from the grey literature, including an unpublished study were added to the findings.

FINDINGS

Of 938 retrieved studies, 35 studies were included in the analysis with 70 individual tests conducted. 17 methods of decontamination were found, included the use of liquids (detergent, benzalkonium chloride, hypochlorite, or ethanol), gases (hydrogen peroxide, ozone, peracetic acid or ethylene oxide), heat (either moist with or without pressure or dry heat), or ultra violet radiation (UVA and UVGI); either alone or in combination. Ethylene oxide, gaseous hydrogen peroxide (with or without peracetic acid), peracetic acid dry fogging system, microwave-generated moist heat, and steam seem to be the most promising methods on decontamination efficacy, physical integrity and filtration capacity.

INTERPRETATION

A number of methods can be used for N95/FFP2 mask reprocessing in case of shortage, helping to keep healthcare workers and patients safe. However, the selection of disinfection or sterilization methods must take into account local availability and turnover capacity as well as the manufacturer; meaning that some methods work better on specific models from specific manufacturers.

SYSTEMATIC REGISTRATION NUMBER

CRD42020193309.

Statistics

Citations

Dimensions.ai Metrics
6 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

15 downloads since deposited on 17 Dec 2021
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Infectious Diseases
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Public Health, Environmental and Occupational Health
Health Sciences > Microbiology (medical)
Health Sciences > Infectious Diseases
Health Sciences > Pharmacology (medical)
Language:English
Date:11 October 2021
Deposited On:17 Dec 2021 19:02
Last Modified:27 May 2024 01:45
Publisher:BioMed Central
ISSN:2047-2994
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/s13756-021-00993-w
PubMed ID:34635165
  • Content: Published Version
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)