Header

UZH-Logo

Maintenance Infos

Differential expression of PSD proteins in age-related spatial learning impairments


Nyffeler, M; Zhang, W N; Feldon, J; Knuesel, I (2007). Differential expression of PSD proteins in age-related spatial learning impairments. Neurobiology of Aging, 28(1):143-155.

Abstract

Deficits in hippocampus-dependent spatial learning that are typical for a subpopulation of aged rats are not associated with loss of neurons or excitatory synapses but accompanied by significant reduction of postsynaptic density (PSD) area in perforated synapses. Here, we examined whether structural alterations in aged learning-impaired rats correlate with altered content of PSD proteins which are critically involved in normal synaptic function. Spatial memory tasks were used to separate male rats into young, aged learning-unimpaired and impaired groups. Semi-quantitative immunohistochemistry revealed significant alterations in the content of the AMPA receptor GluR1 subunit, PSD-95 and synGAP in the hippocampal formation of aged-learning impaired compared to aged-unimpaired and young rats. While synGAP expression was reduced, GluR1 and PSD95 levels were selectively increased in aged-learning-impaired subjects. These findings suggest that age-induced changes of the PSD protein expression levels are more pronounced in learning-impaired rats compared to unimpaired subjects and that the alterations in synaptic protein content may result in reduced synaptic function, potentially underlying the individual differences in mnemonic functions during aging.

Abstract

Deficits in hippocampus-dependent spatial learning that are typical for a subpopulation of aged rats are not associated with loss of neurons or excitatory synapses but accompanied by significant reduction of postsynaptic density (PSD) area in perforated synapses. Here, we examined whether structural alterations in aged learning-impaired rats correlate with altered content of PSD proteins which are critically involved in normal synaptic function. Spatial memory tasks were used to separate male rats into young, aged learning-unimpaired and impaired groups. Semi-quantitative immunohistochemistry revealed significant alterations in the content of the AMPA receptor GluR1 subunit, PSD-95 and synGAP in the hippocampal formation of aged-learning impaired compared to aged-unimpaired and young rats. While synGAP expression was reduced, GluR1 and PSD95 levels were selectively increased in aged-learning-impaired subjects. These findings suggest that age-induced changes of the PSD protein expression levels are more pronounced in learning-impaired rats compared to unimpaired subjects and that the alterations in synaptic protein content may result in reduced synaptic function, potentially underlying the individual differences in mnemonic functions during aging.

Statistics

Citations

Dimensions.ai Metrics
63 citations in Web of Science®
65 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 07 Oct 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > General Neuroscience
Life Sciences > Aging
Health Sciences > Neurology (clinical)
Life Sciences > Developmental Biology
Health Sciences > Geriatrics and Gerontology
Language:English
Date:January 2007
Deposited On:07 Oct 2009 12:15
Last Modified:26 Jun 2022 22:01
Publisher:Elsevier
ISSN:0197-4580
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.neurobiolaging.2005.11.003
PubMed ID:16386336