Header

UZH-Logo

Maintenance Infos

Overyielding and stable species coexistence.


Hector, A (2006). Overyielding and stable species coexistence. New Phytologist, 172(1):1-3.

Abstract

The concept of overyielding originated in plant sciences in the 1950s and 1960s and was widely used in the following decades to assess whether mixtures of plants performed better than expected when compared with monocultures. Overyielding has re-emerged in the last few years as an important method in the analysis of biodiversity experiments (Hector, 1998; Loreau, 1998; Loreau et al., 2001, 2002; Hooper et al., 2005) and other new research areas (Bernasconi et al., 2003). Biodiversity experiments manipulate community diversity (while holding other factors constant) to investigate impacts on ecosystem functioning. Previously, use of the overyielding concept has been limited mainly to the analysis of community ecology experiments on species interactions and in agricultural research, particularly intercropping. However, there has been relatively little work that assesses the overyielding concept in the context of community ecology theory. Loreau (2004) used the classical Lotka–Volterra competition model to investigate overyielding and functional redundancy of species in the context of theory on the stable coexistence of species (Fig. 1). In this issue, Beckage & Gross (pp. 140–148) also use Lotka–Volterra competition models to assess the frequency and degree of overyielding of theoretical communities.

Abstract

The concept of overyielding originated in plant sciences in the 1950s and 1960s and was widely used in the following decades to assess whether mixtures of plants performed better than expected when compared with monocultures. Overyielding has re-emerged in the last few years as an important method in the analysis of biodiversity experiments (Hector, 1998; Loreau, 1998; Loreau et al., 2001, 2002; Hooper et al., 2005) and other new research areas (Bernasconi et al., 2003). Biodiversity experiments manipulate community diversity (while holding other factors constant) to investigate impacts on ecosystem functioning. Previously, use of the overyielding concept has been limited mainly to the analysis of community ecology experiments on species interactions and in agricultural research, particularly intercropping. However, there has been relatively little work that assesses the overyielding concept in the context of community ecology theory. Loreau (2004) used the classical Lotka–Volterra competition model to investigate overyielding and functional redundancy of species in the context of theory on the stable coexistence of species (Fig. 1). In this issue, Beckage & Gross (pp. 140–148) also use Lotka–Volterra competition models to assess the frequency and degree of overyielding of theoretical communities.

Statistics

Citations

Dimensions.ai Metrics
24 citations in Web of Science®
23 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Scopus Subject Areas:Life Sciences > Physiology
Life Sciences > Plant Science
Uncontrolled Keywords:biodiversity, overyielding, productivity, Lotka–Volterra, coexistence, relative yields
Language:English
Date:2006
Deposited On:11 Feb 2008 12:28
Last Modified:21 Jan 2022 14:13
Publisher:Wiley-Blackwell
ISSN:0028-646X
OA Status:Closed
Publisher DOI:https://doi.org/10.1111/j.1469-8137.2006.01865.x
PubMed ID:16945082
Full text not available from this repository.