Header

UZH-Logo

Maintenance Infos

Cape diversification and repeated out-of-southern-Africa dispersal in paper daisies (Asteraceae-Gnaphalieae)


Bergh, N G; Linder, H P (2009). Cape diversification and repeated out-of-southern-Africa dispersal in paper daisies (Asteraceae-Gnaphalieae). Molecular Phylogenetics and Evolution, 51(1):5-18.

Abstract

The large daisy tribe Gnaphalieae occurs in extra-tropical habitats worldwide, but is most diverse in southern Africa and in Australia. We explore the age and evolutionary history of the tribe by means of a phylogenetic hypothesis based on Bayesian analysis of plastid and nuclear DNA sequences, maximum likelihood reconstruction of ancestral areas, and relaxed Bayesian dating. Early diversification occurred in southern Africa in the Eocene-Oligocene, resulting in a grade of mostly Cape-centred lineages which subsequently began speciating in the Miocene, consistent with diversification times for many Cape groups. Gnaphalieae from other geographic regions are embedded within a southern African paraphylum, indicating multiple dispersals out of southern Africa since the Oligocene to Miocene which established the tribe in the rest of the world. Colonisation of Australia via direct long-distance trans-oceanic dispersal in the Miocene resulted in the radiation which produced the Australasian gnaphalioid flora. The similarly diverse regional gnaphalioid floras of Australasia and southern Africa thus exhibit very different temporal species accumulation histories. An examination of the timing and direction of trans-Indian Ocean dispersal events in other angiosperms suggests a role for the West Wind Drift in long-distance dispersal eastwards from southern Africa.

Abstract

The large daisy tribe Gnaphalieae occurs in extra-tropical habitats worldwide, but is most diverse in southern Africa and in Australia. We explore the age and evolutionary history of the tribe by means of a phylogenetic hypothesis based on Bayesian analysis of plastid and nuclear DNA sequences, maximum likelihood reconstruction of ancestral areas, and relaxed Bayesian dating. Early diversification occurred in southern Africa in the Eocene-Oligocene, resulting in a grade of mostly Cape-centred lineages which subsequently began speciating in the Miocene, consistent with diversification times for many Cape groups. Gnaphalieae from other geographic regions are embedded within a southern African paraphylum, indicating multiple dispersals out of southern Africa since the Oligocene to Miocene which established the tribe in the rest of the world. Colonisation of Australia via direct long-distance trans-oceanic dispersal in the Miocene resulted in the radiation which produced the Australasian gnaphalioid flora. The similarly diverse regional gnaphalioid floras of Australasia and southern Africa thus exhibit very different temporal species accumulation histories. An examination of the timing and direction of trans-Indian Ocean dispersal events in other angiosperms suggests a role for the West Wind Drift in long-distance dispersal eastwards from southern Africa.

Statistics

Citations

Dimensions.ai Metrics
80 citations in Web of Science®
76 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 13 Oct 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Systematic and Evolutionary Botany
Dewey Decimal Classification:580 Plants (Botany)
Scopus Subject Areas:Life Sciences > Ecology, Evolution, Behavior and Systematics
Life Sciences > Molecular Biology
Life Sciences > Genetics
Language:English
Date:2009
Deposited On:13 Oct 2009 10:21
Last Modified:26 Jun 2022 22:05
Publisher:Elsevier
ISSN:1055-7903
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.ympev.2008.09.001
PubMed ID:18822381