Header

UZH-Logo

Maintenance Infos

Developing a science-based policy network over the Upper Indus Basin


Shrestha, Arun Bhakta; Shukla, Debabrat; Pradhan, Neera Shrestha; Dhungana, Sharmila; Azizi, Fayezurahman; Memon, Nisar; Mohtadullah, Khalid; Lotia, Hina; Ali, Ajaz; Molden, David; Daming, He; Dimri, A P; Huggel, Christian (2021). Developing a science-based policy network over the Upper Indus Basin. Science of the Total Environment, 784:147067.

Abstract

The Upper Indus Basin's (UIB) unique geographical positioning and its ecosystem contributions to the downstream basin in the form of water and energy are of critical importance. UIB is also among the most vulnerable water towers in the world vis-a-vis climate as well as a host of environmental and socio-economic changes. The paucity of ground observations and their associated unknowns make it imperative to study and highlight the grey areas for attention and action by policy planners and basin government and management at different levels in order to improve the management and the governance structures for better water resource management. As this river basin is shared between countries, enhanced co-creation of knowledge can provide greater understanding of the challenges to stakeholders so that they can make better decisions regarding the development of the region. With this in view, the UIB network, comprising four national chapters (Afghanistan, China, India and Pakistan) linked strategically at regional level, was conceived to provide better understanding of the critical issues associated with the UIB. The network strives for a resilient and empowered UIB region through science-based regional cooperation, which promotes coordination and collaboration among organizations working in the UIB to ensure improved understanding of present and future water availability, demand and hazards and to develop gender sensitive solutions for all stakeholders. The special issue is one of such efforts from the network in knowledge generation, exchange, and dissemination to contribute towards an enhanced understanding of climate change impacts in the Indus. The paper presents a time-wise evolution of the network to highlight the importance of cross boundary knowledge and the relevance of such networks. Such a science-based network can provide important information for science-backed policies for the basin countries. It also details the achievements of the network, lessons learnt from such knowledge networks, and the potential for future contributions to basin countries taking into consideration the transboundary nature of the UIB.

Abstract

The Upper Indus Basin's (UIB) unique geographical positioning and its ecosystem contributions to the downstream basin in the form of water and energy are of critical importance. UIB is also among the most vulnerable water towers in the world vis-a-vis climate as well as a host of environmental and socio-economic changes. The paucity of ground observations and their associated unknowns make it imperative to study and highlight the grey areas for attention and action by policy planners and basin government and management at different levels in order to improve the management and the governance structures for better water resource management. As this river basin is shared between countries, enhanced co-creation of knowledge can provide greater understanding of the challenges to stakeholders so that they can make better decisions regarding the development of the region. With this in view, the UIB network, comprising four national chapters (Afghanistan, China, India and Pakistan) linked strategically at regional level, was conceived to provide better understanding of the critical issues associated with the UIB. The network strives for a resilient and empowered UIB region through science-based regional cooperation, which promotes coordination and collaboration among organizations working in the UIB to ensure improved understanding of present and future water availability, demand and hazards and to develop gender sensitive solutions for all stakeholders. The special issue is one of such efforts from the network in knowledge generation, exchange, and dissemination to contribute towards an enhanced understanding of climate change impacts in the Indus. The paper presents a time-wise evolution of the network to highlight the importance of cross boundary knowledge and the relevance of such networks. Such a science-based network can provide important information for science-backed policies for the basin countries. It also details the achievements of the network, lessons learnt from such knowledge networks, and the potential for future contributions to basin countries taking into consideration the transboundary nature of the UIB.

Statistics

Citations

Dimensions.ai Metrics
4 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

27 downloads since deposited on 06 Jan 2022
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Scopus Subject Areas:Physical Sciences > Environmental Engineering
Physical Sciences > Environmental Chemistry
Physical Sciences > Waste Management and Disposal
Physical Sciences > Pollution
Uncontrolled Keywords:Pollution, Waste Management and Disposal, Environmental Chemistry, Environmental Engineering
Language:English
Date:1 August 2021
Deposited On:06 Jan 2022 09:55
Last Modified:28 Jan 2024 02:38
Publisher:Elsevier
ISSN:0048-9697
OA Status:Hybrid
Publisher DOI:https://doi.org/10.1016/j.scitotenv.2021.147067
Project Information:
  • : FunderSwiss Agency for Development and Cooperation
  • : Grant ID
  • : Project Title
  • : FunderAustralia Department of Foreign Affairs and Trade Australian Government Overseas Aid Programme
  • : Grant ID
  • : Project Title
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)