Header

UZH-Logo

Maintenance Infos

Acute Hemodynamic Effect of Acetazolamide in Patients With Pulmonary Hypertension Whilst Breathing Normoxic and Hypoxic Gas: A Randomized Cross-Over Trial


Lichtblau, Mona; Berlier, Charlotte; Saxer, Stéphanie; Carta, Arcangelo F; Mayer, Laura; Groth, Alexandra; Bader, Patrick R; Schneider, Simon R; Furian, Michael; Schwarz, Esther I; Swenson, Erik R; Bloch, Konrad E; Ulrich, Silvia (2021). Acute Hemodynamic Effect of Acetazolamide in Patients With Pulmonary Hypertension Whilst Breathing Normoxic and Hypoxic Gas: A Randomized Cross-Over Trial. Frontiers in Medicine, 8:681473.

Abstract

Aims: To test the acute hemodynamic effect of acetazolamide in patients with pulmonary hypertension (PH) under ambient air and hypoxia. Methods: Patients with pulmonary arterial or chronic thromboembolic PH (PAH/CTEPH) undergoing right heart catheterization were included in this randomized, placebo-controlled, double-blinded, crossover trial. The main outcome, pulmonary vascular resistance (PVR), further hemodynamics, blood- and cerebral oxygenation were measured 1 h after intravenous administration of 500 mg acetazolamide or placebo-saline on ambient air (normoxia) and at the end of breathing hypoxic gas (FIO2 0.15, hypoxia) for 15 min. Results: 24 PH-patients, 71% men, mean ± SD age 59 ± 14 years, BMI 28 ± 5 kg/m2, PVR 4.7 ± 2.1 WU participated. Mean PVR after acetazolamide vs. placebo was 5.5 ± 3.0 vs. 5.3 ± 3.0 WU; mean difference (95% CI) 0.2 (-0.2-0.6, p = 0.341). Heart rate was higher after acetazolamide (79 ± 12 vs. 77 ± 11 bpm, p = 0.026), pH was lower (7.40 ± 0.02 vs. 7.42 ± 0.03, p = 0.002) but PaCO2 and PaO2 remained unchanged while cerebral tissue oxygenation increased (71 ± 6 vs. 69 ± 6%, p = 0.017). In acute hypoxia, acetazolamide decreased PVR by 0.4 WU (0.0-0.9, p = 0.046) while PaO2 and PaCO2 were not changed. No adverse effects occurred. Conclusions: In patients with PAH/CTEPH, i.v. acetazolamide did not change pulmonary hemodynamics compared to placebo after 1 hour in normoxia but it reduced PVR after subsequent acute exposure to hypoxia. Our findings in normoxia do not suggest a direct acute pulmonary vasodilator effect of acetazolamide. The reduction of PVR during hypoxia requires further corroboration. Whether acetazolamide improves PH when given over a prolonged period by stimulating ventilation, increasing oxygenation, and/or altering vascular inflammation and remodeling remains to be investigated.

Keywords: acetazolamide; hemodynamics; hypoxia; normoxia; pulmonary arterial hypertension; pulmonary vascular disease; right heart catheterization.

Abstract

Aims: To test the acute hemodynamic effect of acetazolamide in patients with pulmonary hypertension (PH) under ambient air and hypoxia. Methods: Patients with pulmonary arterial or chronic thromboembolic PH (PAH/CTEPH) undergoing right heart catheterization were included in this randomized, placebo-controlled, double-blinded, crossover trial. The main outcome, pulmonary vascular resistance (PVR), further hemodynamics, blood- and cerebral oxygenation were measured 1 h after intravenous administration of 500 mg acetazolamide or placebo-saline on ambient air (normoxia) and at the end of breathing hypoxic gas (FIO2 0.15, hypoxia) for 15 min. Results: 24 PH-patients, 71% men, mean ± SD age 59 ± 14 years, BMI 28 ± 5 kg/m2, PVR 4.7 ± 2.1 WU participated. Mean PVR after acetazolamide vs. placebo was 5.5 ± 3.0 vs. 5.3 ± 3.0 WU; mean difference (95% CI) 0.2 (-0.2-0.6, p = 0.341). Heart rate was higher after acetazolamide (79 ± 12 vs. 77 ± 11 bpm, p = 0.026), pH was lower (7.40 ± 0.02 vs. 7.42 ± 0.03, p = 0.002) but PaCO2 and PaO2 remained unchanged while cerebral tissue oxygenation increased (71 ± 6 vs. 69 ± 6%, p = 0.017). In acute hypoxia, acetazolamide decreased PVR by 0.4 WU (0.0-0.9, p = 0.046) while PaO2 and PaCO2 were not changed. No adverse effects occurred. Conclusions: In patients with PAH/CTEPH, i.v. acetazolamide did not change pulmonary hemodynamics compared to placebo after 1 hour in normoxia but it reduced PVR after subsequent acute exposure to hypoxia. Our findings in normoxia do not suggest a direct acute pulmonary vasodilator effect of acetazolamide. The reduction of PVR during hypoxia requires further corroboration. Whether acetazolamide improves PH when given over a prolonged period by stimulating ventilation, increasing oxygenation, and/or altering vascular inflammation and remodeling remains to be investigated.

Keywords: acetazolamide; hemodynamics; hypoxia; normoxia; pulmonary arterial hypertension; pulmonary vascular disease; right heart catheterization.

Statistics

Citations

Dimensions.ai Metrics
4 citations in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

9 downloads since deposited on 10 Jan 2022
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Intensive Care Medicine
04 Faculty of Medicine > University Hospital Zurich > Clinic for Pneumology
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > General Medicine
Uncontrolled Keywords:General Medicine
Language:English
Date:22 July 2021
Deposited On:10 Jan 2022 12:38
Last Modified:27 Mar 2024 03:04
Publisher:Frontiers Research Foundation
ISSN:2296-858X
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.3389/fmed.2021.681473
PubMed ID:34368187
Project Information:
  • : FunderSchweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  • : Grant ID
  • : Project Title
  • Content: Published Version
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)