Navigation auf zora.uzh.ch

Search ZORA

ZORA (Zurich Open Repository and Archive)

First-principles correction scheme for linear-response time-dependent density functional theory calculations of core electronic states

Bussy, Augustin; Hutter, Jürg (2021). First-principles correction scheme for linear-response time-dependent density functional theory calculations of core electronic states. Journal of Chemical Physics, 155(3):034108.

Abstract

Linear-response time-dependent density functional theory (LR-TDDFT) for core level spectroscopy using standard local functionals suffers from self-interaction error and a lack of orbital relaxation upon creation of the core hole. As a result, LR-TDDFT calculated x-ray absorption near edge structure spectra needed to be shifted along the energy axis to match experimental data. We propose a correction scheme based on many-body perturbation theory to calculate the shift from first-principles. The ionization potential of the core donor state is first computed and then substituted for the corresponding Kohn–Sham orbital energy, thus emulating Koopmans’s condition. Both self-interaction error and orbital relaxation are taken into account. The method exploits the localized nature of core states for efficiency and integrates seamlessly in our previous implementation of core level LR-TDDFT, yielding corrected spectra in a single calculation. We benchmark the correction scheme on molecules at the K- and L-edges as well as for core binding energies and report accuracies comparable to higher order methods. We also demonstrate applicability in large and extended systems and discuss efficient approximations.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Scopus Subject Areas:Physical Sciences > General Physics and Astronomy
Physical Sciences > Physical and Theoretical Chemistry
Uncontrolled Keywords:Physical and Theoretical Chemistry, General Physics and Astronomy
Language:English
Date:21 July 2021
Deposited On:10 Jan 2022 11:53
Last Modified:26 Dec 2024 02:40
Publisher:American Institute of Physics
ISSN:0021-9606
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1063/5.0058124
Project Information:
  • Funder: SNSF
  • Grant ID: 51NF40-182892
  • Project Title: NCCR MARVEL: Materials’ Revolution: Computational Design and Discovery of Novel Materials (phase II)
Download PDF  'First-principles correction scheme for linear-response time-dependent density functional theory calculations of core electronic states'.
Preview
  • Content: Published Version

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
11 citations in Web of Science®
11 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

88 downloads since deposited on 10 Jan 2022
42 downloads since 12 months
Detailed statistics

Authors, Affiliations, Collaborations

Similar Publications