Header

UZH-Logo

Maintenance Infos

Radiomic analysis to predict outcome in recurrent glioblastoma based on multi-center MR imaging from the prospective DIRECTOR trial


Vils, Alex. Radiomic analysis to predict outcome in recurrent glioblastoma based on multi-center MR imaging from the prospective DIRECTOR trial. 2021, University of Zurich, Faculty of Medicine.

Abstract

Background: Based on promising results from radiomic approaches to predict O6-methylguanine DNA methyltransferase promoter methylation status (MGMT status) and clinical outcome in patients with newly diagnosed glioblastoma, the current study aimed to evaluate radiomics in recurrent glioblastoma patients.

Methods: Pre-treatment MR-imaging data of 69 patients enrolled into the DIRECTOR trial in recurrent glioblastoma served as a training cohort, and 49 independent patients formed an external validation cohort. Contrast-enhancing tumor and peritumoral volumes were segmented on MR images. 180 radiomic features were extracted after application of two MR intensity normalization techniques: fixed number of bins and linear rescaling. Radiomic feature selection was performed via principal component analysis, and multivariable models were trained to predict MGMT status, progression-free survival from first salvage therapy, referred to herein as PFS2, and overall survival (OS). The prognostic power of models was quantified with concordance index (CI) for survival data and area under receiver operating characteristic curve (AUC) for the MGMT status.

Results: We established and validated a radiomic model to predict MGMT status using linear intensity interpolation and considering features extracted from gadolinium-enhanced T1-weighted MRI (training AUC = 0.670, validation AUC = 0.673). Additionally, models predicting PFS2 and OS were found for the training cohort but were not confirmed in our validation cohort.

Conclusions: A radiomic model for prediction of MGMT promoter methylation status from tumor texture features in patients with recurrent glioblastoma was successfully established, providing a non-invasive approach to anticipate patient's response to chemotherapy if biopsy cannot be performed. The radiomic approach to predict PFS2 and OS failed.

Keywords: DIRECTOR trial; MGMT status; linear intensity interpolation; radiomics; recurrent glioblastoma.

Abstract

Background: Based on promising results from radiomic approaches to predict O6-methylguanine DNA methyltransferase promoter methylation status (MGMT status) and clinical outcome in patients with newly diagnosed glioblastoma, the current study aimed to evaluate radiomics in recurrent glioblastoma patients.

Methods: Pre-treatment MR-imaging data of 69 patients enrolled into the DIRECTOR trial in recurrent glioblastoma served as a training cohort, and 49 independent patients formed an external validation cohort. Contrast-enhancing tumor and peritumoral volumes were segmented on MR images. 180 radiomic features were extracted after application of two MR intensity normalization techniques: fixed number of bins and linear rescaling. Radiomic feature selection was performed via principal component analysis, and multivariable models were trained to predict MGMT status, progression-free survival from first salvage therapy, referred to herein as PFS2, and overall survival (OS). The prognostic power of models was quantified with concordance index (CI) for survival data and area under receiver operating characteristic curve (AUC) for the MGMT status.

Results: We established and validated a radiomic model to predict MGMT status using linear intensity interpolation and considering features extracted from gadolinium-enhanced T1-weighted MRI (training AUC = 0.670, validation AUC = 0.673). Additionally, models predicting PFS2 and OS were found for the training cohort but were not confirmed in our validation cohort.

Conclusions: A radiomic model for prediction of MGMT promoter methylation status from tumor texture features in patients with recurrent glioblastoma was successfully established, providing a non-invasive approach to anticipate patient's response to chemotherapy if biopsy cannot be performed. The radiomic approach to predict PFS2 and OS failed.

Keywords: DIRECTOR trial; MGMT status; linear intensity interpolation; radiomics; recurrent glioblastoma.

Statistics

Downloads

19 downloads since deposited on 31 Jan 2022
9 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Dissertation (monographical)
Referees:Andratschke Nicolaus, Guckenberger Matthias
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Radiation Oncology
UZH Dissertations
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2021
Deposited On:31 Jan 2022 14:43
Last Modified:01 Feb 2022 04:27
OA Status:Green
Free access at:Related URL. An embargo period may apply.
Related URLs:https://pubmed.ncbi.nlm.nih.gov/33937035/
https://www.frontiersin.org/articles/10.3389/fonc.2021.636672/full
https://www.zora.uzh.ch/id/eprint/206289/
  • Content: Published Version
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)