Header

UZH-Logo

Maintenance Infos

Nocturnal cerebral tissue oxygenation in lowlanders with chronic obstructive pulmonary disease travelling to an altitude of 2,590 m: Data from a randomised trial


Furian, Michael; Flueck, Deborah; Scheiwiller, Philipp M; Mueller‐Mottet, Séverine; Urner, Lorenz M; Latshang, Tsogyal D; Ulrich, Silvia; Bloch, Konrad E (2021). Nocturnal cerebral tissue oxygenation in lowlanders with chronic obstructive pulmonary disease travelling to an altitude of 2,590 m: Data from a randomised trial. Journal of Sleep Research, 30(6):e13365.

Abstract

Altitude exposure induces hypoxaemia in patients with chronic obstructive pulmonary disease (COPD), particularly during sleep. The present study tested the hypothesis in patients with COPD staying overnight at high altitude that nocturnal arterial hypoxaemia is associated with impaired cerebral tissue oxygenation (CTO). A total of 35 patients with moderate-to-severe COPD, living at <800 m (mean [SD] age 62.4 [12.3] years, forced expiratory volume in 1 s [FEV1 ] 61 [16]% predicted, awake pulse oximetry ≥92%) underwent continuous overnight monitoring of pulse oximetry (oxygen saturation [SpO2 ]) and near-infrared spectroscopy of prefrontal CTO, respectively, at 490 m and 2,590 m. Regression analysis was used to evaluate whether nocturnal arterial desaturation (COPDDesat , SpO2 <90% for >30% of night-time) at 490 m predicted CTO at 2,590 m when controlling for baseline variables. At 2,590 m, mean nocturnal SpO2 and CTO were decreased versus 490 m, mean change -8.8% (95% confidence interval [CI] -10.0 to -7.6) and -3.6% (95% CI -5.7 to -1.6), difference in change ΔCTO-ΔSpO2 5.2% (95% CI 3.0 to 7.3; p < .001). Moreover, frequent cyclic desaturations (≥4% dips/hr) occurred in SpO2 and CTO, mean change from 490 m 35.3/hr (95% CI 24.9 to 45.7) and 3.4/hr (95% CI 1.4 to 5.3), difference in change ΔCTO-ΔSpO2 -32.8/hr (95% CI -43.8 to -21.8; p < .001). Regression analysis confirmed an association of COPDDesat with lower CTO at 2,590 m (coefficient -7.6%, 95% CI -13.2 to -2.0; p = .007) when controlling for several confounders. We conclude that lowlanders with COPD staying overnight at 2,590 m experience altitude-induced hypoxaemia and periodic breathing in association with sustained and intermittent cerebral deoxygenation. Although less pronounced than the arterial deoxygenation, the altitude-induced cerebral tissue deoxygenation may represent a risk of brain dysfunction, especially in patients with COPD with nocturnal hypoxaemia at low altitude.

Keywords: cerebrovascular reactivity; hypoxaemia; hypoxia; near-infrared spectroscopy.

Abstract

Altitude exposure induces hypoxaemia in patients with chronic obstructive pulmonary disease (COPD), particularly during sleep. The present study tested the hypothesis in patients with COPD staying overnight at high altitude that nocturnal arterial hypoxaemia is associated with impaired cerebral tissue oxygenation (CTO). A total of 35 patients with moderate-to-severe COPD, living at <800 m (mean [SD] age 62.4 [12.3] years, forced expiratory volume in 1 s [FEV1 ] 61 [16]% predicted, awake pulse oximetry ≥92%) underwent continuous overnight monitoring of pulse oximetry (oxygen saturation [SpO2 ]) and near-infrared spectroscopy of prefrontal CTO, respectively, at 490 m and 2,590 m. Regression analysis was used to evaluate whether nocturnal arterial desaturation (COPDDesat , SpO2 <90% for >30% of night-time) at 490 m predicted CTO at 2,590 m when controlling for baseline variables. At 2,590 m, mean nocturnal SpO2 and CTO were decreased versus 490 m, mean change -8.8% (95% confidence interval [CI] -10.0 to -7.6) and -3.6% (95% CI -5.7 to -1.6), difference in change ΔCTO-ΔSpO2 5.2% (95% CI 3.0 to 7.3; p < .001). Moreover, frequent cyclic desaturations (≥4% dips/hr) occurred in SpO2 and CTO, mean change from 490 m 35.3/hr (95% CI 24.9 to 45.7) and 3.4/hr (95% CI 1.4 to 5.3), difference in change ΔCTO-ΔSpO2 -32.8/hr (95% CI -43.8 to -21.8; p < .001). Regression analysis confirmed an association of COPDDesat with lower CTO at 2,590 m (coefficient -7.6%, 95% CI -13.2 to -2.0; p = .007) when controlling for several confounders. We conclude that lowlanders with COPD staying overnight at 2,590 m experience altitude-induced hypoxaemia and periodic breathing in association with sustained and intermittent cerebral deoxygenation. Although less pronounced than the arterial deoxygenation, the altitude-induced cerebral tissue deoxygenation may represent a risk of brain dysfunction, especially in patients with COPD with nocturnal hypoxaemia at low altitude.

Keywords: cerebrovascular reactivity; hypoxaemia; hypoxia; near-infrared spectroscopy.

Statistics

Citations

Dimensions.ai Metrics
3 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Pneumology
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > Cognitive Neuroscience
Life Sciences > Behavioral Neuroscience
Uncontrolled Keywords:Behavioral Neuroscience, Cognitive Neuroscience, General Medicine
Language:English
Date:1 December 2021
Deposited On:25 Jan 2022 16:56
Last Modified:26 Apr 2024 01:39
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0962-1105
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1111/jsr.13365
PubMed ID:33902162
Project Information:
  • : FunderSchweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  • : Grant ID
  • : Project Title
  • : FunderLunge Zürich
  • : Grant ID
  • : Project Title
Full text not available from this repository.