Navigation auf zora.uzh.ch

Search

ZORA (Zurich Open Repository and Archive)

Pericyte, but not astrocyte, hypoxia inducible factor-1 (HIF-1) drives hypoxia-induced vascular permeability in vivo

Baumann, Julia; Tsao, Chih-Chieh; Patkar, Shalmali; Huang, Sheng-Fu; Francia, Simona; Magnussen, Synnøve Norvoll; Gassmann, Max; Vogel, Johannes; Köster-Hegmann, Christina; Ogunshola, Omolara O (2022). Pericyte, but not astrocyte, hypoxia inducible factor-1 (HIF-1) drives hypoxia-induced vascular permeability in vivo. Fluids and Barriers of the CNS, 19:6.

Abstract

Background: Ways to prevent disease-induced vascular modifications that accelerate brain damage remain largely elusive. Improved understanding of perivascular cell signalling could provide unparalleled insight as these cells impact vascular stability and functionality of the neurovascular unit as a whole. Identifying key drivers of astrocyte and pericyte responses that modify cell–cell interactions and crosstalk during injury is key. At the cellular level, injury-induced outcomes are closely entwined with activation of the hypoxia-inducible factor-1 (HIF-1) pathway. Studies clearly suggest that endothelial HIF-1 signalling increases blood–brain barrier permeability but the influence of perivascular HIF-1 induction on outcome is unknown. Using novel mouse lines with astrocyte and pericyte targeted HIF-1 loss of function, we herein show that vascular stability in vivo is differentially impacted by perivascular hypoxia-induced HIF-1 stabilization.
Methods: To facilitate HIF-1 deletion in adult mice without developmental complications, novel Cre-inducible astrocyte-targeted (GFAP-CreERT2; HIF-1αfl/fl and GLAST-CreERT2; HIF-1αfl/fl) and pericyte-targeted (SMMHC-CreERT2; HIF-1αfl/fl) transgenic animals were generated. Mice in their home cages were exposed to either normoxia (21% O2) or hypoxia (8% O2) for 96 h in an oxygen-controlled humidified glove box. All lines were similarly responsive to hypoxic challenge and post-Cre activation showed significantly reduced HIF-1 target gene levels in the individual cells as predicted.
Results: Unexpectedly, hypoxia-induced vascular remodelling was unaffected by HIF-1 loss of function in the two astrocyte lines but effectively blocked in the pericyte line. In correlation, hypoxia-induced barrier permeability and water accumulation were abrogated only in pericyte targeted HIF-1 loss of function mice. In contrast to expectation, brain and serum levels of hypoxia-induced VEGF, TGF-β and MMPs (genes known to mediate vascular remodelling) were unaffected by HIF-1 deletion in all lines. However, in agreement with the permeability data, immunofluorescence and electron microscopy showed clear prevention of hypoxia-induced tight junction disruption in the pericyte loss of function line.
Conclusion: This study shows that pericyte but not astrocyte HIF-1 stabilization modulates endothelial tight junction functionality and thereby plays a pivotal role in hypoxia-induced vascular dysfunction. Whether the cells respond similarly or differentially to other injury stimuli will be of significant relevance.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Veterinärwissenschaftliches Institut > Institute of Veterinary Physiology
05 Vetsuisse Faculty > Center for Clinical Studies
Dewey Decimal Classification:570 Life sciences; biology
Scopus Subject Areas:Life Sciences > Neurology
Life Sciences > Developmental Neuroscience
Life Sciences > Cellular and Molecular Neuroscience
Uncontrolled Keywords:Cellular and Molecular Neuroscience, Developmental Neuroscience, Neurology, General Medicine
Language:English
Date:1 December 2022
Deposited On:31 Jan 2022 07:29
Last Modified:27 Aug 2024 01:36
Publisher:BioMed Central
ISSN:2045-8118
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/s12987-021-00302-y
PubMed ID:35033138
Project Information:
  • Funder: SNSF
  • Grant ID: 31003A_133016
  • Project Title: The contribution of cell-specific HIF-1-mediated pathways to blood-brain barrier function and stability.
  • Funder: SNSF
  • Grant ID: 31003A_150062
  • Project Title: Cell-specific HIF-1 compromises blood-brain barrier integrity: consequences for stroke outcome
Download PDF  'Pericyte, but not astrocyte, hypoxia inducible factor-1 (HIF-1) drives hypoxia-induced vascular permeability in vivo'.
Preview
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
14 citations in Web of Science®
15 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

18 downloads since deposited on 31 Jan 2022
5 downloads since 12 months
Detailed statistics

Authors, Affiliations, Collaborations

Similar Publications