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The Role of Lytic Infection for
Lymphomagenesis of Human
g-Herpesviruses

Christian Münz*

Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland

Epstein Barr virus (EBV) and Kaposi sarcoma associated herpesvirus (KSHV) are two

oncogenic human g-herpesviruses that are each associated with 1-2% of human tumors.

They encode bona fide oncogenes that they express during latent infection to amplify their

host cells and themselves within these. In contrast, lytic virus particle producing infection has

been considered to destroy host cells and might be even induced to therapeutically eliminate

EBV and KSHV associated tumors. However, it has become apparent in recent years that

early lytic replication supports tumorigenesis by these two human oncogenic viruses. This

review will discuss the evidence for this paradigm change and how lytic gene products might

condition the microenvironment to facilitate EBV and KSHV associated tumorigenesis.
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INTRODUCTION ON EBV AND KSHV INFECTION

AND TUMORIGENESIS

Epstein Barr virus (EBV) and Kaposi sarcoma associated herpesvirus (KSHV) are the two human g-

herpesviruses (human herpesvirus 4 and 8, respectively) (Ehlers et al., 2010). Both are quite successful

pathogens in the human population and have no other known animal hosts (Münz, 2019; Cesarman

et al., 2019). EBV persistently infects more than 95% of the human adult population, and while rare in
the Northern hemisphere, persistent KSHV infection is found in more than 50% of individuals in sub-

Saharan Africa. Both viruses encode latent and lytic gene products (Mariggio et al., 2017; Frost and

Gewurz, 2018). While lytic replication allows through the expression of immediate early, early and late

structural g-herpesvirus genes the production of infectious viral particles, latent gene expression is

thought to maintain viral DNA in proliferating lymphocytes, probably primarily B cells, rescue them

from apoptosis and drive them into differentiation to long-lived memory cells for persistence (Thorley-

Lawson, 2001; Dittmer and Damania, 2016; Frohlich and Grundhoff, 2020). For this purpose, EBV
encodes six latent nuclear (EBNA1, 2, 3A, 3B, 3C and LP), two latent membrane (LMP1 and 2) and

non-translated RNAs (Epstein–Barr virus-encoded small RNAs or EBERs and miRNAs) (Kempkes and

Robertson, 2015). They are grouped in four latency patterns (0, I, II and III). Latency III expresses all

latency genes and can be found in naïve B cells of healthy virus carriers, latency II only EBNA1, LMP1

and 2 plus non-translated RNAs in germinal center B cells, latency I only EBNA1 at the protein level in

homeostatically proliferating memory B cells and latency 0 only non-translated RNAs in resting
memory B cells as the site of EBV persistence (Babcock et al., 2000; Hochberg et al., 2004). KSHV

expresses latency-associated nuclear antigen (LANA), vCyclin, viral FADD-like interleukin-1-beta-

converting enzyme [FLICE/caspase 8]-inhibitory protein (vFlip), Kaposins and non-translated RNAs
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(miRNAs) during latency (Frohlich and Grundhoff, 2020).

However, lytic KSHV gene products are often co-expressed even

in poorly infectious virus-producing cells, and KSHV latency has

not yet been linked to a human B cell differentiation program.

Nevertheless, latentEBVandKSHVgeneproductshaveoncogenic

abilities and, therefore, both human g-herpesviruses are designated
WHO class I carcinogens (Parkin, 2006; Bouvard et al., 2009).

Although EBV encodes the more potent growth transforming gene

products (Kulwichit et al., 1998; Sin andDittmer, 2013; Sin et al., 2015;

AlQarniet al., 2018)andcanreadily immortalizehumanBcells invitro

(Pich et al., 2019), each of the two viruses is associated with around 1-

2% of all cancers in humans (Cesarman, 2014; Cesarman et al., 2019;
Shannon-Lowe and Rickinson, 2019). These include primarily B cell

lymphomas and epithelial cell carcinomas for EBV, and endothelial

cell cancersandBcell lymphoproliferations forKSHV.EBVlatency I is

present inBurkitt’s lymphoma, latency II inHodgkin’s lymphomaand

nasopharyngeal carcinoma, and latency III in some diffuse large B cell

lymphomas (DLBCL) and post-transplant lymphoproliferative
disease (PTLD) (Shannon-Lowe and Rickinson, 2019). KSHV is

associated with the endothelial cell tumor Kaposi sarcoma and

multicentric Castleman’s disease (Cesarman, 2014; Cesarman et al.,

2019). Finally, primary effusion lymphoma (PEL), a plasmacytoma

(Klein et al., 2003), is to 100% associated with KSHV and harbors in

additionEBVin90%of cases (Cesarmanetal., 1995;Nadoret al., 1996;

Cesarman, 2011). Interestingly, it is also the only KSHV associated
tumor, fromwhich readily transformed cell lines can be established in

vitro that maintain KSHV (Frohlich and Grundhoff, 2020).

Interestingly, co-infection with EBV allows KSHV persistence in

mice with reconstituted human immune system components

(humanized mice), and results in PEL-like lymphomagenesis

(McHugh et al., 2017). Similarly, the two g-herpesviruses or their
monkey orthologues seem to be also co-transmitted in Cameroonian

children and macaques (Bruce et al., 2018; Labo et al., 2019). EBV

seropositivity was also found to be the strongest correlate of KSHV

seropositivity in a rural Ugandan patient cohort (Sallah et al., 2020).

Finally, EBV supports KSHVpersistence after primary B cell infection

and improves KSHV DNA maintenance after infection of EBV

negative PEL in vitro (Bigi et al., 2018; Faure et al., 2019). Thus,
KSHV might rely on EBV for its persistence, bidirectionally

influencing their viral gene expression. I will primarily focus in this

reviewonthis interactionofEBVandKSHVinassociated lymphomas.

CONTRIBUTION OF LYTIC g-HERPESVIRUS

INFECTION TO LYMPHOMAGENESIS

One facet of how these two tumor viruses influence each other is

that KSHV induces lytic EBV replication (McHugh et al., 2017).

This is observed in double-infected B cells of humanized mice
and double-infected PELs of patients. Surprisingly, this increased

lytic EBV infection contributes also to the more frequent

lymphomagenesis that is observed in KSHV and EBV infected

humanized mice, because co-infection with lytic replication

deficient EBV lacking the immediate early lytic activator

BZLF1 (BamH1 Z fragment encoding leftward reading frame 1)
does not cause more tumors than EBV single infection (McHugh

et al., 2017). Similarly, BZLF1deficientEBV infectionwas reported to

cause fewer lymphomas than wild-type EBV infection in a smaller

percentage of humanized mice (Ma et al., 2011; Antsiferova et al.,

2014). This effect seemed more pronounced for lymphoma

dissemination to liver and kidney than in spleen (Antsiferova et al.,

2014). Vice versa, BZLF1 promotor variants that increase lytic EBV
replicationpromote lymphomagenesis in humanizedmice (Ma et al.,

2012;Bristol et al., 2018).Thiswas shownfor a triplemutant (ZV,ZV’

and ZIIR) and the nasopharyngeal carcinoma associated V3 variant

of the BZLF1 promotor. Decreased lymphomagenesis in the absence

of lytic EBV replication is somewhat counterintuitive because

infectious particle production is thought to lead to infected cell
death, counteracting tumor cell proliferation.

Increased tumor formation in the presence of lytic EBV replication

is, however, not only observed in humanized mice. Viruses that are

enriched in EBV associated NK/T cell lymphomas and DLBCLs

frequently carry deletions in the BART (BamH1 A fragment

encoding rightward transcripts) miRNA encoding region that is
thought to suppress lytic EBV replication by targeting expression of

BZLF1 and the other lytic transactivator BRLF1 (Okuno et al., 2019).

Moreover, plasma rather than cell-associated viral loads seems to be

predictive of EBV associated tumorigenesis, such as nasopharyngeal

carcinoma, PTLD, DLBCL, NK/T cell lymphoma and Hodgkin’s

lymphoma, suggesting that lytic EBV replication is associated with

these EBV associated malignancies (Kanakry et al., 2016).
How might such lytic EBV replication support tumor

formation? It is likely that abortive early lytic EBV infection

plays a pro-tumorigenic role (Münz, 2019). Accordingly, B cells

transformed with a mutant EBV lacking the late lytic gene product

BALF5 were more efficient in establishing lymphomas in immune

compromised mice (Okuno et al., 2019). The pro-lymphomagenic
effects of early lytic EBV gene products could be in part mediated

by shaping the tumor microenvironment. Along these lines EBV

transformed B cells with higher spontaneous lytic reactivation

produce more tumour necrosis factor (TNF), CCL5 (RANTES)

and IL-10 (Arvey et al., 2015) (Figure 1). In addition, EBV encodes

also viral IL-10 (BCRF1) (Jochum et al., 2012). These could

promote an immune suppressive tumor microenvironment
through vIL-10 and IL-10 mediated T cell response suppression,

as well as CCL5 dependent recruitment of myeloid suppressor cells

(Casagrande et al., 2019; Walens et al., 2019). Similarly, early lytic

KSHV gene products might promote lymphomagenesis (Figure 1).

Along these lines viral IL-6 (ORF-K2) supports B cell lymphoma

dissemination in immune compromised mice and B cell
hyperproliferation in transgenic mice (Suthaus et al., 2012;

Fullwood et al., 2018). Together with cMyc overexpression it can

also support lymphoma formation in mice (Rosean et al., 2016).

Thus, viral IL-6 probably serves as an auto- and paracrine growth

factor for KSHV infected B cells. Furthermore, transgenic expression

of viral protein kinase of KSHV (ORF36) in mice leads to B cell

hyperproliferation and lymphoma development at increased
frequency, compared to littermate mice (Anders et al., 2018). Viral

protein kinase seems to facilitate B cell activation during KSHV

infection. Moreover, also K1 transgenic mice develop

lymphoproliferations and lymphomas in half of the animals

(Prakash et al., 2000; Prakash et al., 2002; Prakash et al., 2005;
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Wang et al., 2007; Berkova et al., 2015). K1 encodes an activating

receptor that promotes B cell stimulation and apoptosis resistance,

including inhibition of Fas mediated extrinsic cell death induction.

Finally, inducible expression of viral G protein-coupled receptor

(ORF74) promotes angiogenesis and thereby Kaposi sarcoma-like
tumorigenesis in mice (Yang et al., 2000; Holst et al., 2001; Guo et al.,

2003; Montaner et al., 2003; Montaner et al., 2004; Jensen et al., 2005;

Grisotto et al., 2006). Thus, early lytic gene products of both EBV

and KSHV might condition the tumor microenvironment for more

efficient malignancy development.

PROTECTION FROM TUMORIGENESIS BY

LYTIC g-HERPESVIRUS REPLICATION

SPECIFIC IMMUNE RESPONSES

In addition to this evidence from infections withmutant or variant

g-herpesviruses and early lytic viral gene product overexpression,

protection by lytic replication specific immune responses against

EBV and KSHV associated tumors points towards the importance

of lytic infection in virus-associated malignancies. Uncontrolled
lytic EBV replication might cause symptomatic primary EBV

infection, called infectious mononucleosis (IM) (Luzuriaga and

Sullivan, 2010). While two thirds of Europeans and Northern

Americans acquire EBV prior to the age of two, the remaining one

third often gets infected in the second decade of life (Dunmire

et al., 2018). One third to half of these developed a strong CD8+ T

cell lymphocytosis four to six weeks after EBV encounter. They

shed infectious virus at increased titers into saliva often for

months, develop antibodies against structural proteins like viral

capsid antigen (VCA), but not yet EBNA1, and the majority of the

expanding CD8+ T cells are directed against early lytic EBV
antigens with individual peptide specificities constituting up to

40% of the total CD8+ T cell compartment (Callan et al., 1998). In

contrast, latent EBV antigen specific CD8+ T cells emerge at IM

convalescence and were therefore proposed to be the protective

entity of EBV specific immune responses (Taylor et al., 2015). IM

increases the risk to develop EBV associated Hodgkin’s lymphoma

4fold, but only for around 5 years after primary EBV infection
(Hjalgrim et al., 2003). This was characterized in more than 50’000

adolescents and young adults in Scandinavian countries, as well as

several follow-up studies (Hjalgrim et al., 2007; Hjalgrim et al.,

2010). Therefore, uncontrolled lytic EBV replication could

predispose for some EBV associated lymphomas.

AlongwithCD8+T cells, natural killer (NK) cells expandduring
IM (Williams et al., 2005; Balfour et al., 2013; Azzi et al., 2014).

Primarily, early differentiated NK cells expressing inhibitory

NKG2A but not killer immunoglobulin-like receptors (KIRs)

expand around 4fold (Azzi et al., 2014; Hendricks et al., 2014).

These degranulate their cytotoxic molecules preferentially in the

presence of lytically EBV replicating B cells (Chijioke et al., 2013;

Azzi et al., 2014). Accordingly, NK cells of humanized mice which
are also enriched in this early differentiated NK cell phenotype

(Strowig et al., 2010) restrict wild-type but not BZLF1deficient EBV

FIGURE 1 | Lytic EBV and KSHV gene expression condition the tumor microenvironment. Conditioning of the tumor microenvironment by lytic EBV and KSHV gene

products occurs most likely at the same time in primary effusion lymphomas (PELs) that are 100% KSHV and 90% EBV infected. Lytic EBV replication attracts

monocytes via CCL5 to become immune suppressive tumor associated macrophages (TAMs). Viral IL-10 (vIL-10; BCRF1) suppresses CD8+ T cell recognition. In

addition, the lytic KSHV product viral G-protein coupled receptor (vGPCR; ORF74) promotes angiogenesis. Furthermore, K1 (ORF-K1) and viral protein kinase

(vPK; ORF36) promote proliferation of KSHV infected cells. Finally, viral IL-6 (vIL-6; ORF-K2) promotes KSHV infected B cell proliferation. This figure was created in

part with modified Servier Medical Art templates, which are licensed under a Creative Commons Attribution 3.0 unported license: https://smart.servier.com.
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infection (Chijioke et al., 2013; Landtwing et al., 2016). Restriction

of lytic EBV replication by NK cells also reduced lymphoma

formation, because NKp46 directed antibody depletion of NK

cells leads to higher frequencies of DLBCL-like lymphomas in

humanized mice (Chijioke et al., 2013; Landtwing et al., 2016).

Recognitionof lyticallyEBVreplicatingBcells byNKcells seems
to be primarily mediated via recognition by natural killer group 2

memberD(NKG2D)withDNAXaccessorymolecule 1 (DNAM-1)

as co-receptor (Pappworth et al., 2007). Their ligands are up-

regulated on B cells upon induction of lytic EBV infection

(Pappworth et al., 2007). NKG2D surface expression on NK and

CD8+ T cells is reduced due to inefficient glycosylation by loss-of-
function mutations in the Mg2+ transporter MAGT1 in patients

with X-linked immunodeficiency withmagnesium defect, Epstein-

Barr virus (EBV) infection, and neoplasia (XMEN) (Chaigne-

Delalande et al., 2013; Dhalla et al., 2015; Patiroglu et al., 2015;

Brigida et al., 2017; Ravell et al., 2020a). EBV associated lymphomas

develop in one third of the affected patients, but interestingly also
one patient with Kaposi sarcoma was reported (Brigida et al., 2017;

Ravell et al., 2020b). Mg2+ supplementation can restore NKG2D

surface expression and EBV specific immune control in some of

these patients (Chaigne-Delalande et al., 2013), but has not proven

to be a successful durable therapy of XMEN (Ravell et al., 2020b).

Nevertheless, NKG2D recognition of lytically replicating EBV

infected B cells seems to be essential to prevent lymphomas.
In addition, the other primary immunodeficiencies that

predispose for EBV associated diseases also seem to point

towards cytotoxic lymphocytes, including NK and CD8+ T cells,

as main components of EBV specific immune control (Damania

and Münz, 2019; Latour and Fischer, 2019; Tangye and Latour,

2020). These affect the cytotoxic machinery (perforin, Munc13-4,
Munc18-2), T cell receptor signaling (ITK, PI3K, RasGRP1,

ZAP70, CORO1A), co-stimulation (CD27, CD70, 4-1BB, CTLA-

4, SAP) as well as cytotoxic lymphocyte development and

expansion (GATA2, MCM4, XIAP, STK4, CTPS1). While EBV

specific immune control seems to be independent of type I and II

interferons (IFNs) and antibodies (Latour and Fischer, 2019;

Münz, 2020), type II IFN signaling seems to be required for
KSHV specific immune control, and is compromised bymutations

in IFNgR1 and STAT4 (Damania and Münz, 2019). Furthermore,

the requirements for co-stimulation seem to be different with

OX40 being essential for KSHV specific immune control (Byun

et al., 2013). Nevertheless, T cells rather than B cells seem to be

important for the immune control of both g-herpesviruses.
Among these, adoptive transfer of early lytic EBV antigen specific

CD8+ T cells has been shown to transiently control EBV infection in

humanized mice (Antsiferova et al., 2014). Furthermore, late lytic

EBVantigen specificCD4+Tcells havebeendemonstrated to control

EBV transformed B cells in immune compromised mice

(Linnerbauer et al., 2014). Both of these T cell specificities display

cytotoxicity against EBV transformed B cell lines (Heller et al., 2006).
Early lytic EBV antigen specific CD8+ T cell responses are also

maintained at higher frequency than latent and late lytic antigen

specific responses (Abbott et al., 2013). Similarly,KSHVlytic antigens

are also more frequently recognized by CD4+ and CD8+ T cells

(Robey et al., 2010; Roshan et al., 2017). Their protective functions

against KSHV infected cells and in humanized mice need to be

characterized in more detail in the future.

CONCLUSIONS

Recent evidence suggests that most likely abortive early lytic

replication in many cells or productive lytic replication in a few
cells promotes KSHV and EBV associated lymphoma formation

(Münz, 2019). In healthy virus carriers a large proportion of the

cytotoxicCD8+Tcell response is dedicated to the recognitionof early

lytic KSHV and EBV antigens, probably more than to their latent

antigens (Long et al., 2019). In contrast, most EBV specific

vaccination approaches have so far focused on latent antigens to
elicit protective T cells and late lytic antigens to induce antibodies

(Taylor et al., 2004; Smith et al., 2006; Moutschen et al., 2007; Gurer

et al., 2008;Ruiss et al., 2011;Meixlsperger et al., 2013;Kanekiyo et al.,

2015; vanZyl et al., 2018; Rühl et al., 2019; Bu et al., 2019). From these

studies the latent EBV antigens EBNA1, LMP1 and LMP2 have

emerged as protective antigens (Rühl et al., 2020). In humanized

mice, EBNA1 incorporated into an EBV derived virus-like particle
(VLP), but not the VLP itself protected from challenge by EBV

infection (van Zyl et al., 2018). In contrast to the B cell trophic VLP,

EBNA1 targeting to dendritic cells (DCs) with recombinant

antibodies and a potent adjuvant to activate classical DCs was not

able to elicit sufficient T cell responses for protection (Gurer et al.,

2008; Meixlsperger et al., 2013), even so both vaccines elicited
primarily cytotoxic CD4+ T cell responses (Meixlsperger et al.,

2013; van Zyl et al., 2018). Recombinant viral vectors are more

efficient in eliciting CD8+T cell responses and they can be combined

with CD4+ T cell eliciting vaccines in heterologous protective

vaccination (Rühl et al., 2019). For such comprehensively CD4+

and CD8+ T cell eliciting vaccines incorporation of early lytic EBV

antigens, like BMLF1 (Antsiferova et al., 2014) should be considered.
If proving efficient such vaccine formulations could then also be

extended to lytic KSHV antigens. Thus, the new appreciation of a

contributionofearly lytic replication topossiblybothEBVandKSHV

associated tumorigenesis gives us also additional antigens that could

be explored for vaccination against these two human tumor viruses.
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