Header

UZH-Logo

Maintenance Infos

Redefining phenotypes to advance psychiatric genetics: Implications from hierarchical taxonomy of psychopathology


Abstract

Genetic discovery in psychiatry and clinical psychology is hindered by suboptimal phenotypic definitions. We argue that the hierarchical, dimensional, and data-driven classification system proposed by the Hierarchical Taxonomy of Psychopathology (HiTOP) consortium provides a more effective approach to identifying genes that underlie mental disorders, and to studying psychiatric etiology, than current diagnostic categories. Specifically, genes are expected to operate at different levels of the HiTOP hierarchy, with some highly pleiotropic genes influencing higher order psychopathology (e.g., the general factor), whereas other genes conferring more specific risk for individual spectra (e.g., internalizing), subfactors (e.g., fear disorders), or narrow symptoms (e.g., mood instability). We propose that the HiTOP model aligns well with the current understanding of the higher order genetic structure of psychopathology that has emerged from a large body of family and twin studies. We also discuss the convergence between the HiTOP model and findings from recent molecular studies of psychopathology indicating broad genetic pleiotropy, such as cross-disorder SNP-based shared genetic covariance and polygenic risk scores, and we highlight molecular genetic studies that have successfully redefined phenotypes to enhance precision and statistical power. Finally, we suggest how to integrate a HiTOP approach into future molecular genetic research, including quantitative and hierarchical assessment tools for future data-collection and recommendations concerning phenotypic analyses.

Abstract

Genetic discovery in psychiatry and clinical psychology is hindered by suboptimal phenotypic definitions. We argue that the hierarchical, dimensional, and data-driven classification system proposed by the Hierarchical Taxonomy of Psychopathology (HiTOP) consortium provides a more effective approach to identifying genes that underlie mental disorders, and to studying psychiatric etiology, than current diagnostic categories. Specifically, genes are expected to operate at different levels of the HiTOP hierarchy, with some highly pleiotropic genes influencing higher order psychopathology (e.g., the general factor), whereas other genes conferring more specific risk for individual spectra (e.g., internalizing), subfactors (e.g., fear disorders), or narrow symptoms (e.g., mood instability). We propose that the HiTOP model aligns well with the current understanding of the higher order genetic structure of psychopathology that has emerged from a large body of family and twin studies. We also discuss the convergence between the HiTOP model and findings from recent molecular studies of psychopathology indicating broad genetic pleiotropy, such as cross-disorder SNP-based shared genetic covariance and polygenic risk scores, and we highlight molecular genetic studies that have successfully redefined phenotypes to enhance precision and statistical power. Finally, we suggest how to integrate a HiTOP approach into future molecular genetic research, including quantitative and hierarchical assessment tools for future data-collection and recommendations concerning phenotypic analyses.

Statistics

Citations

Dimensions.ai Metrics
71 citations in Web of Science®
69 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

41 downloads since deposited on 02 Feb 2022
30 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:06 Faculty of Arts > Institute of Psychology
Dewey Decimal Classification:150 Psychology
Scopus Subject Areas:Health Sciences > Psychiatry and Mental Health
Life Sciences > Biological Psychiatry
Language:English
Date:February 2020
Deposited On:02 Feb 2022 18:12
Last Modified:26 Jun 2024 01:51
Publisher:American Psychological Association
ISSN:0021-843X
OA Status:Hybrid
Publisher DOI:https://doi.org/10.1037/abn0000486
PubMed ID:31804095