Navigation auf zora.uzh.ch

Search ZORA

ZORA (Zurich Open Repository and Archive)

1-deoxysphingolipids bind to COUP-TF to modulate lymphatic and cardiac cell development

Abstract

Identification of physiological modulators of nuclear hormone receptor (NHR) activity is paramount for understanding the link between metabolism and transcriptional networks that orchestrate development and cellular physiology. Using libraries of metabolic enzymes alongside their substrates and products, we identify 1-deoxysphingosines as modulators of the activity of NR2F1 and 2 (COUP-TFs), which are orphan NHRs that are critical for development of the nervous system, heart, veins, and lymphatic vessels. We show that these non-canonical alanine-based sphingolipids bind to the NR2F1/2 ligand-binding domains (LBDs) and modulate their transcriptional activity in cell-based assays at physiological concentrations. Furthermore, inhibition of sphingolipid biosynthesis phenocopies NR2F1/2 deficiency in endothelium and cardiomyocytes, and increases in 1-deoxysphingosine levels activate NR2F1/2-dependent differentiation programs. Our findings suggest that 1-deoxysphingosines are physiological regulators of NR2F1/2-mediated transcription.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Clinical Chemistry
Dewey Decimal Classification:610 Medicine & health
540 Chemistry
Scopus Subject Areas:Life Sciences > Molecular Biology
Life Sciences > General Biochemistry, Genetics and Molecular Biology
Life Sciences > Developmental Biology
Life Sciences > Cell Biology
Language:English
Date:22 November 2021
Deposited On:03 Feb 2022 05:45
Last Modified:27 Dec 2024 02:36
Publisher:Cell Press (Elsevier)
ISSN:1534-5807
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.devcel.2021.10.018
PubMed ID:34762852
Full text not available from this repository.

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
9 citations in Web of Science®
9 citations in Scopus®
Google Scholar™

Altmetrics

Authors, Affiliations, Collaborations

Similar Publications