Abstract
We show that every Gromov hyperbolic group Γ admits a quasi-isometric embedding into the product of n+1 binary trees, where n=dim∂∞Γ is the topological dimension of the boundary at infinity of Γ.
Buyalo, S; Dranishnikov, A; Schroeder, Viktor (2007). Embedding of hyperbolic groups into products of binary trees. Inventiones Mathematicae, 169(1):153-192.
We show that every Gromov hyperbolic group Γ admits a quasi-isometric embedding into the product of n+1 binary trees, where n=dim∂∞Γ is the topological dimension of the boundary at infinity of Γ.
We show that every Gromov hyperbolic group Γ admits a quasi-isometric embedding into the product of n+1 binary trees, where n=dim∂∞Γ is the topological dimension of the boundary at infinity of Γ.
Item Type: | Journal Article, refereed, original work |
---|---|
Communities & Collections: | 07 Faculty of Science > Institute of Mathematics |
Dewey Decimal Classification: | 510 Mathematics |
Scopus Subject Areas: | Physical Sciences > General Mathematics |
Language: | English |
Date: | 2007 |
Deposited On: | 07 Dec 2009 14:11 |
Last Modified: | 23 Jan 2022 14:31 |
Publisher: | Springer |
ISSN: | 0020-9910 |
OA Status: | Closed |
Publisher DOI: | https://doi.org/10.1007/s00222-007-0045-2 |
TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.