Header

UZH-Logo

Maintenance Infos

Bioengineered tooth emulation systems for regenerative and pharmacological purposes


Pagella, P; Cordiale, A; Marconi, G D; Trubiani, O; Rasponi, M; Mitsiadis, T A (2021). Bioengineered tooth emulation systems for regenerative and pharmacological purposes. European Cells and Materials (ECM), 41:502-516.

Abstract

Genetic conditions, traumatic injuries, carious lesions and periodontal diseases are all responsible for dental pathologies. The current clinical approaches are based on the substitution of damaged dental tissues with inert materials, which, however, do not ensure full physiological recovery of the teeth. Different populations of dental mesenchymal stem cells have been isolated from dental tissues and several attempts have already been made at using these stem cells for the regeneration of human dental tissues. Despite encouraging progresses, dental regenerative therapies are very far from any clinical applications. This is tightly connected with the absence of proper platforms that would model and faithfully mimic human dental tissues in their complexity. Therefore, in the last decades, many efforts have been dedicated for the development of innovative systems capable of emulating human tooth physiology in vitro. This review focuses on the use of in vitro culture systems, such as bioreactors and "organ-on-a-chip" microfluidic devices, for the modelling of human dental tissues and their potential use for dental regeneration and drug testing.

Abstract

Genetic conditions, traumatic injuries, carious lesions and periodontal diseases are all responsible for dental pathologies. The current clinical approaches are based on the substitution of damaged dental tissues with inert materials, which, however, do not ensure full physiological recovery of the teeth. Different populations of dental mesenchymal stem cells have been isolated from dental tissues and several attempts have already been made at using these stem cells for the regeneration of human dental tissues. Despite encouraging progresses, dental regenerative therapies are very far from any clinical applications. This is tightly connected with the absence of proper platforms that would model and faithfully mimic human dental tissues in their complexity. Therefore, in the last decades, many efforts have been dedicated for the development of innovative systems capable of emulating human tooth physiology in vitro. This review focuses on the use of in vitro culture systems, such as bioreactors and "organ-on-a-chip" microfluidic devices, for the modelling of human dental tissues and their potential use for dental regeneration and drug testing.

Statistics

Citations

Dimensions.ai Metrics
10 citations in Web of Science®
12 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

15 downloads since deposited on 11 Feb 2022
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Institute of Oral Biology
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Physical Sciences > Bioengineering
Life Sciences > Biochemistry
Physical Sciences > Biomaterials
Physical Sciences > Biomedical Engineering
Life Sciences > Cell Biology
Language:English
Date:10 May 2021
Deposited On:11 Feb 2022 09:43
Last Modified:27 May 2024 01:53
Publisher:European Cells & Materials Ltd
ISSN:1473-2262
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.22203/eCM.v041a32
PubMed ID:33970477
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)