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Abstract. This paper studies the problem of pole assignment for symmetric and Hamiltonian
transfer functions. A necessary and sufficient condition for pole assignment by complex symmetric
output feedback transformations is given. Moreover, in the case where the McMillan degree coincides
with the number of parameters appearing in the symmetric feedback transformations, we derive an
explicit combinatorial formula for the number of pole assigning symmetric feedback gains. The
proof uses intersection theory in projective space as well as a formula for the degree of the complex
Lagrangian Grassmann manifold.
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1. Introduction. One of the best known inverse eigenvalue problems from lin-
ear system theory is that of pole assignment, i.e., finding a static output feedback
gain for a given linear system such that the closed loop poles of the system coin-
cide with a specified subset of the complex plane. Moreover, in the case of finitely
many solutions, a formula for the number of pole assigning feedback transformations
is desirable. Early contributions on the subject were obtained by, e.g., Davison and
Wang [7] and Kimura [20], who derived sufficient conditions for the solvability. How-
ever, these conditions were far from being necessary as well. In a series of pioneering
papers [16, 24, 25], Hermann and Martin applied tools from algebraic geometry to
obtain necessary and sufficient conditions, valid for a generic class of systems and
for complex feedback transformations. Their approach was based on the dominant
morphism theorem [2, Chapter AG, section 17, Theorem 17.3] from complex alge-
braic geometry. A second breakthrough was subsequently made by Brockett and
Byrnes [3], who used intersection theoretic arguments and the Schubert calculus on
Grassmann manifolds to count the number of pole assigning complex feedback trans-
formations. By refining these algebraic-geometric approaches of Hermann and Martin
and Brockett and Byrnes, a number of fundamental contributions on the subject were
made that finally led to a solution of the problem in the real case, with important
contributions due to [8, 21, 29, 37, 38]. For an excellent survey paper on this subject,
written from a control-theoretic point of view, see, e.g., [4]. More recently, various
intersection theoretic tasks related to the Schubert calculus have been studied in the
algebraic geometry literature; see, e.g., [12, 18, 34]. The focus of most of the inves-
tigations so far has been on the unstructured case, where no underlying symmetries
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for the involved transfer function or for the associated feedback transformations are
imposed. However, transfer functions with symmetries occur naturally in various ap-
plication areas, such as in network theory or mechanics. For example, the transfer
functions G(s) of linear RLC-circuits, consisting solely of resistors, capacitors, and
inductive elements, are symmetric; i.e., they satisfy G(s)⊤ = G(s). In mechanics, the
transfer functions of linear Hamiltonian systems are characterized by the symmetry
relation G(−s)⊤ = G(s), while second order mechanical systems of the form

Mẍ = Nx + Bu, y = B⊤x

yield symmetric Hamiltonian transfer functions, satisfying

G(s) = H(s2), H(s) = H(s)⊤;

see, e.g., [1, 5, 6, 9]. For such structured systems it is reasonable to restrict the class of
admissible feedback transformations to those that preserve the symmetry properties of
the transfer functions. Therefore the known results on pole placement on unstructured
systems do not apply in these cases and instead require a new approach.

In this paper we start an investigation of the pole placement problem for n ×
n symmetric transfer functions G(s) = G(s)⊤, arising in electrical network theory,
and Hamiltonian transfer functions. For both types of systems the natural class of
admissible output feedback transformations are the symmetric ones F = F⊤, yielding
a symmetric closed loop transfer function

GF (s) := (In −G(s)F )−1G(s).

As the number of free parameters occurring in the symmetric feedback matrices F
is n(n + 1)/2, a necessary condition for generic solvability of this output feedback
problem is that the McMillan degree δ of the transfer function G satisfies δ ≥

(

n+1
2

)

in the symmetric case, and δ ≥ n(n+1) in the Hamiltonian case. In fact, we show that
generically for complex symmetric output feedback transformations this condition is
also sufficient. Moreover, for the limit case δ =

(

n+1
2

)

(or δ = n(n+ 1)), we derive an
explicit combinatorial formula for the number of complex symmetric output feedback
gains that place the poles at given points. Our formula coincides with that of the
degree for the complex Lagrangian manifold, given in [36].

In the real case such complete results cannot be expected. In fact, the symmetry of
the transfer functions then imposes a priori limitations for the possible pole locations
of such systems. This has been observed in [23], where it is shown for symmetric
transfer functions that—in the special case that the Cauchy index of G coincides with
the McMillan degree—generically real symmetric output feedback pole assignability
holds if and only if n ≥ δ. Of course, in most applications we have n ≤ δ, and
therefore the description of the set of poles that can be achieved by real symmetric
output feedback becomes a complicated and nontrivial task.

2. Complex symmetric and Hamiltonian realizations. In this section we
recall some basic facts concerning complex symmetric and Hamiltonian transfer func-
tions and associated signature symmetric and Hamiltonian realizations. Let C denote
the field of complex numbers. A complex rational transfer function G(s) ∈ C(s)n×n

of McMillan degree δ is called symmetric or Hamiltonian, respectively, if

G(s) = G(s)⊤ or G(s) = G(−s)⊤, respectively,
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holds for all s ∈ C. A complex symmetric realization is a linear system of the form

ẋ = Ax + Bu, y = B⊤x,

where A ∈ C
δ×δ is symmetric, i.e., A⊤ = A, and B ∈ C

δ×n. Similarly, a Hamiltonian
realization is a linear system

ẋ = Ax + Bu, y = Cx,

where A ∈ C
δ×δ, B ∈ C

δ×n, C ∈ C
n×δ satisfies

AJ = (AJ)⊤, C⊤ = JB

and
[

0 I
−I 0

]

denotes the standard symplectic form on C
δ×δ. In particular, Hamiltonian systems

always have even McMillan degree δ.
Complex symmetric realizations are the natural class of realizations for complex

symmetric transfer functions. In fact, they are the proper analogue of signature
symmetric realizations of real rational transfer functions, appearing in network theory.
Here a signature symmetric realization (A,B,C) is one that is symmetric relative to
the bilinear form Ipq := diag(Ip,−Iq); i.e., (A,B,C) satisfies (AIpq)

⊤ = AIpq, C
⊤ =

IpqB. Such realizations always exist for real symmetric transfer functions G, and
the integer p − q coincides with the so-called Cauchy–Maslov index of G. If q =
0, then this definition coincides with the one above for symmetric realizations. In
particularly, over R, real symmetric realizations correspond to linear models of RC-
networks, constructed entirely using capacitors and resistors. The real symmetric
transfer functions defined by them are characterized by the property that the Cauchy–
Maslov index coincides with the McMillan degree [1, 9, 14].

The following variant of the Kalman realization theorem is well known; see, e.g.,
[9, 10]. Recall that the complex orthogonal group O(δ,C) is the matrix group con-
sisting of all complex δ × δ matrices S, satisfying SS⊤ = Iδ. Given any complex
realization (A,B,C) of a symmetric transfer function G(s) = C(sI − A)−1B, note
that (A⊤, C⊤, B⊤) is also a realization.

Proposition 2.1. Let G(s) = G(s)⊤ be an n×n strictly proper, complex rational
transfer function of McMillan degree δ. Then the following hold:

(1) G(s) has a controllable and observable complex symmetric realization

(A,B,C) = (A⊤, C⊤, B⊤).

(2) If (Ai, Bi, Ci), i=1, 2, are two controllable and observable complex symmetric
realizations of G(s), then there exists a unique complex orthogonal transfor-
mation S ∈ O(δ,C) such that (A2, B2, C2) = (SA1S

−1, SB1, C1S
−1).

In the literature usually only the real case of the above result is proved, where
the statement is actually slightly different due to the presence of signature symmetric
realizations. In the complex case the result simplifies to the one given here. For the
sake of completeness we include the proof; see also [10].

Proof. If (A,B,C) is a minimal realization of G(s), then, by symmetry of G,
(A⊤, C⊤, B⊤) also is a minimal realization. Applying Kalman’s realization theorem
implies the existence of a unique invertible complex δ × δ matrix S with

(A⊤, C⊤, B⊤) = (SAS−1, SB,CS−1).
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By transposing this equation and using the uniqueness of S we conclude that S = S⊤.
It is a well-known fact from linear algebra that every complex symmetric invert-
ible matrix has a representation S = XX⊤ by a complex invertible matrix X.
Moreover, X is uniquely determined up to right factors XT , where T ∈ O(δ,C).
Then (XAX−1, XB,CX−1) is a complex symmetric realization, which completes the
proof.

There is a similar realization theorem for Hamiltonian systems, for which we refer
to the literature; see, e.g., [6, 9]. Static linear output feedback can be meaningfully
defined for such systems only through symmetric gain matrices. Note that

adj(sI −A) = sn−1I + sn−2(A− trace(A)I) + lower order terms.

Thus, for symmetric A, the rational matrix

B⊤(sI −A−BFB⊤)−1B = B⊤ 1

det(sI −A−BFB⊤)
adj(sI −A−BFB⊤)B

is symmetric only if B⊤BFB⊤B is symmetric. Therefore, if B has full column rank,
an output feedback transformation

u = Fy + v

with the closed system

ẋ = (A + BFB⊤)x + Bu, y = B⊤x

preserves the complex symmetry of the realizations if and only if F = F⊤. Thus
we define two complex symmetric realizations (Ai, Bi, Ci), i = 1, 2, to be symmetric
output feedback equivalent if and only if there exist S ∈ O(δ,C), F = F⊤ ∈ C

n×n with

(A2, B2, C2) = (S(A1 + B1FB⊤
1 )S−1, SB1, C1S

−1).

Equivalently, they are symmetric output feedback equivalent if and only if the asso-
ciated transfer functions satisfy

G2(s) = (In −G1(s)F )−1G1(s).

Similarly, output feedback for Hamiltonian systems

ẋ = (A + BFC)x + Bu, y = Cx

preserves the Hamiltonian properties of the realization if and only if F = F⊤. Thus
in both cases we have to focus on symmetric output feedback.

We note some elementary geometric properties of the set of complex symmetric
transfer functions that will be important in the subsequent development; see, e.g., [6]
for some of the details for the proof of the subsequent theorem. We omit a full proof
as it would take us too far from the subject.

Proposition 2.2. Let SRatδ,n(C) and Hamδ,n(C), respectively, denote the sets
of strictly proper, complex symmetric and Hamiltonian n × n transfer functions of
McMillan degree δ. Then SRatδ,n(C) and Hamδ,n(C) are, respectively, a smooth
complex manifold of complex dimension δ(n + 1) and dimension δn. Moreover, they
are nonsingular irreducible quasi-affine varieties.
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In particular, there is a canonical notion of “genericity” for complex symmetric
or Hamiltonian transfer functions. Explicitly, a property E of complex symmetric
transfer functions is called generic if the set defined by E,

{G ∈ SRatδ,n(C) | G has property E},

is a Zariski open subset of SRatδ,m(C). Equivalently, this also can be expressed in
terms of complex symmetric realizations.

3. Main result. After these preliminaries we can now formulate and prove the
main technical results of this paper. Let G(s) be an n × n complex symmetric or
Hamiltonian transfer function, i.e., G(s)⊤ = G(s) or G(−s)⊤ = G(s), respectively.
Assume that G(s) is strictly proper and has McMillan degree δ. The complex sym-
metric eigenvalue assignment problem then asks the following question.

Problem 3.1. For a given arbitrary monic polynomial ϕ(s) ∈ C[s] of degree δ
(ϕ(s) = ϕ(−s) is assumed to be even in the Hamiltonian case), is there an n × n
complex symmetric matrix F such that the closed loop transfer function

GF (s) := (In −G(s)F )−1G(s)

has the characteristic polynomial ϕ(s), i.e., such that the poles of GF (s) are the zeros
of ϕ(s)?

If for a particular symmetric (Hamiltonian) transfer function G(s) Problem 3.1 has
an affirmative answer, we will say that G(s) is pole assignable in the class of complex
symmetric (Hamiltonian) feedback compensators. We say that G(s) is generically pole
assignable if the problem is solvable for a generic choice of admissible polynomials
ϕ(s).

Similar to the situation of the static pole placement problem [3, 37] and the
dynamic pole placement problem [28], Problem 3.1 turns out to be highly nonlinear,
and techniques from algebraic geometry will be required to study the problem. The
first main result is in the spirit of Hermann and Martin [16], by deriving a generic
necessary and sufficient condition via the dominant morphism theorem.

We prove some lemmas first. Let π(A) = (a11, . . . , aδδ) be the projection onto
the diagonal entries of an δ × δ matrix A. In what follows we will identify C

δ with
the complex vector space of row vectors. For any symmetric matrix L, define θL :
O(δ,C) → C

δ through

θL(S) = π(SLS−1).

As O(δ,C) is a Lie group, its tangent space at the identity matrix I is given by the
Lie algebra of complex skew-symmetric matrices

so(δ,C) = {X ∈ C
δ×δ | X + X⊤ = 0}.

Moreover, the Jacobian dθLI of θL at I is given by

dθLI : so(δ,C) → V, dθLI (X) = π(XL− LX),

where

V =

{

(x1, . . . , xδ) ∈ C
δ |

δ
∑

1

xi = 0

}

.
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For any δ× δ matrix L, the graph G(L) of L is defined as a graph with δ vertices
such that there is a path from vertex i to vertex j if and only if the ijth entry of L is
nonzero. It is a well-known fact from linear algebra that the graph G(L) is connected
if and only if L is irreducible, i.e., if and only if there exists no permutation matrix P
such that PLP−1 is block diagonal. We use this fact together with an idea developed
in [15, Lemma 2.5] to prove the following equivalent characterization.

Lemma 3.2. The Jacobian dθLI is surjective if and only if the associated graph
G(L) is connected.

Proof. By inspection, the derivative dθLI is not surjective if and only if there exists
a nonzero diagonal matrix Z of trace zero such that for all X ∈ so(δ,C)

trace(Z(XL− LX)) = trace((LZ − ZL)X) = 0.

By symmetry of L,Z we have LZ − ZL ∈ so(δ,C). Since the trace function defines
a nondegenerate bilinear form on so(δ,C), the condition trace((LZ − ZL)X) = 0 is
equivalent to LZ = ZL. Since Z is a nonzero diagonal matrix of trace zero, there is
a permutation matrix P such that Ẑ := PZP−1 = block diag(a1I1, . . . , akIk) with
k ≥ 2 and ai’s distinct. Let L̂ = PLP−1. Then LZ = ZL is equivalent to L̂Ẑ = ẐL̂,
which is equivalent to L̂ being block diagonal. But from the above remark this is
equivalent to the graph G(L) being disconnected. The result follows.

Lemma 3.3. Let L be a nonzero complex symmetric matrix such that π(L) = 0.
Then there is a family of orthogonal matrices S(ǫ) ∈ O(δ,C), ǫ ≥ 0, with S(0) = I
such that the matrix L̂(ǫ) := S(ǫ)LS(ǫ)−1 has the properties that π(L̂(ǫ)) = 0 and

dϕ
L̂(ǫ)
I is surjective for all ǫ ∈ (0, π/2).
Proof. If G(L) is connected, then by the previous lemma the choice S(ǫ) := I does

the job. Thus it suffices to prove that G(L) not connected implies that then we can
find a family of transformations S(ǫ) such that π(S(ǫ)LS(ǫ)−1) = 0 and the largest
connected subgraph of G(S(ǫ)LS(ǫ)−1) contains more vertices than that of G(L) for
all 0 < ǫ < π/2.

Note that π(L) = 0 and L �= 0 imply that the largest connected subgraph of G(L)
must contain at least 2 vertices. Assume that the largest connected subgraph of G(L)
contains k vertices, 2 ≤ k < δ. Without loss of generality, assume

L =

[

L1 0
0 L2

]

,

where the graph of the k × k submatrix L1 is connected. Write

L1 =

[

L11 α
α⊤ 0

]

and L2 =

[

0 β⊤

β L22

]

,

where L11 and L22 are sizes (k−1)× (k−1) and (δ−k−1)× (δ−k−1), respectively.
By irreducibility of L1 we have α �= 0. Thus L has the form

⎡

⎢

⎢

⎣

L11 α 0 0
α⊤ 0 0 0
0 0 0 β⊤

0 0 β L22

⎤

⎥

⎥

⎦

.

Let

S(ǫ) =

⎡

⎢

⎢

⎣

I(k−1)×(k−1) 0 0 0
0 cos ǫ − sin ǫ 0
0 sin ǫ cos ǫ 0
0 0 0 I(δ−k−1)×(δ−k−1)

⎤

⎥

⎥

⎦

.
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Then

S(ǫ)LS−1(ǫ) =

⎡

⎢

⎢

⎣

L11 (cos ǫ)α (sin ǫ)α 0
(cos ǫ)α⊤ 0 0 (− sin ǫ)β⊤

(sin ǫ)α⊤ 0 0 (cos ǫ)β⊤

0 (− sin ǫ)β (cos ǫ)β L22

⎤

⎥

⎥

⎦

.

For the graph G(S(ǫ)LS−1(ǫ)) with 0 < ǫ < π/2, the vertices {1, . . . , k} are still
connected and the vertex k + 1 is symmetrically connected to at least one of the first
k vertices. Thus the vertices {1, . . . , k + 1} are connected.

Lemma 3.4. Let L be a linear subspace of complex symmetric matrices of dimen-
sion δ, and L �⊂ sl(δ,C). Then there exists an orthogonal matrix S ∈ O(δ,C) such
that π |SLS−1 is one to one, and onto.

Proof. The proof goes by recursively constructing a basis {L1, . . . , Lδ} of L such
that {π(SL1S

−1), . . . , π(SLδS
−1)} are linearly independent for a suitable complex

orthogonal matrix S ∈ O(δ,C). First note that we can modify any basis of L into
a basis L(1) := {L1, . . . , Lδ} of L such that L1 �∈ sl(δ,C) and Li ∈ sl(δ,C) for
i = 2, . . . , δ. In fact, if {K1, . . . ,Kδ} denotes any basis of L with trace(K1) �= 0, then
{L1 := K1, L2 := K2 − c2K1, . . . , Lδ := Kδ − cδK1}, ci := trace(Ki)/ trace(K1), is as
desired. By construction of L1, we have π(L1) �= 0.

Let {L1, . . . , Lδ} be a basis of L such that L1 �∈ sl(δ,C) and Li ∈ sl(δ,C) for
i = 2, . . . , δ. Then dim span{π(L1), . . . , π(Lδ)} := k ≥ 1. If k < δ, then by re-
ordering the indices we can assume that {π(L1), . . . , π(Lk)} are linearly independent
and

π(Lj) =

k
∑

i=1

cijπ(Li) for j = k + 1, . . . , δ.

By replacing Lj with Lj −
∑k

i=1 cijLi, we can further assume that π(Lj) = 0 for
j = k + 1, . . . , δ. It is thus sufficient to show that if there is an orthogonal ma-
trix Ŝ such that the matrices {Mj := ŜLjŜ

−1, j = 1, . . . , δ} have the property that
{π(M1), . . . , π(Mk)} are linearly independent and π(Mj) = 0, j = k + 1, . . . , δ, for
some k < n, then we can find an orthogonal S such that

{π(SM1S
−1), . . . , π(SMkS

−1), π(SMk+1S
−1)}

are linearly independent.
By Lemma 3.3, there exists Sǫ ∈ O(δ,C) arbitrarily close to the identity ma-

trix such that π(SǫM1S
−1
ǫ ), . . . , π(SǫMkS

−1
ǫ ) are linearly independent and the graph

G(SǫMk+1S
−1
ǫ ) is connected. By replacing Mi with SǫMiS

−1
ǫ , we can assume further

that dθ
Mk+1

I is onto V . Then there exists a skew-symmetric matrix X such that

π(XMk+1 −Mk+1X) �∈ span{π(M1), . . . , π(Mk)}.

Let

S(ǫ) = exp(ǫX).

Then S(ǫ) is orthogonal for all ǫ, and

S(ǫ) = I + ǫX + higher order terms.
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The Taylor series expansions of {π(S(ǫ)MiS(ǫ)−1)} have the forms

π(S(ǫ)MiS(ǫ)−1) = π(Mi) + βi(ǫ), i = 1, . . . , k,

and

π(S(ǫ)Mk+1S(ǫ)−1) = ǫ (π(XMk+1 −Mk+1X) + βk+1(ǫ)) ,

where βi(ǫ) are continuous with respect to ǫ and βi(ǫ) → 0 as ǫ → 0 for i = 1, . . . , k+1.
Since {π(M1), . . . , π(Mk), π(XMk+1 − Mk+1X)} are linearly independent, for suffi-
cient small ǫ > 0, {π(M1)+β1(ǫ), . . . , π(Mk)+βk(ǫ), π(XMk+1−Mk+1X)+βk+1(ǫ)}
are also linearly independent; i.e.,

{π(S(ǫ)M1S(ǫ)−1, . . . , π(S(ǫ)MkS(ǫ)−1, π(S(ǫ)Mk+1S(ǫ)−1}

are linearly independent.
Theorem 3.5. If G(s) is a symmetric (or Hamiltonian) transfer function of

McMillan degree δ >
(

n+1
2

)

(or δ > n(n + 1)), then G(s) is not pole assignable in the
class of (real or) complex symmetric feedback compensators.

When δ ≤
(

n+1
2

)

(or δ ≤ n(n+1)), then there is a generic set of n×n symmetric
(or Hamiltonian) transfer functions of degree δ which are generically pole assignable
via complex symmetric feedback compensators.

Proof. We give only a sketch of the proof, as the arguments based on the dominant
morphism theorem are well known from [16, 24]. Note, however, that there is a serious
gap in the proof of [24] for the pole placement result on Hamiltonian systems because
it is not proved that the set of generically pole assignable Hamiltonian systems is
nonempty. In fact, a construction of such an example is not completely trivial and
depends on our previous lemmas.

The first claim follows immediately from a standard dimension argument, as the
vector space Sym(n) of complex n× n symmetric matrices has dimension

(

n+1
2

)

. For
the second claim we note that the set of generically pole assignable systems is a
Zariski open subset of the nonsingular, irreducible quasi-affine variety of symmetric
or Hamiltonian transfer functions, respectively. Therefore we need only show that
this Zariski open subset is nonempty. By the dominant morphism theorem, it suffices
to find one system whose Jacobian of the pole placement map at one point is onto.

Note, by the Newton formula, that the coefficients of the characteristic polynomial
det(sI − A) = sδ + αδ−1s

δ−1 + · · · + α1s + α0 are related to the traces of powers of
A as follows:

αδ−1 = − trace(A),

αδ−2 = −
1

2
( trace(A2) + αδ−1 trace(A)),

...

α0 = −
1

δ
( trace(Aδ) + αδ−1 trace(Aδ−1) + · · · + α1 trace(A)).

Therefore for the case of symmetric transfer functions, the pole placement map
is equivalent to the map

φ : Sym(n) −→ C
δ

F �−→ ( trace(A + BFB⊤), . . . , trace(A + BFB⊤)δ),
(3.1)
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and its Jacobian at 0 is given by

dφ0(F ) = ( trace(BFB⊤), 2 trace(ABFB⊤), . . . , δ trace(Aδ−1BFB⊤)).

For the case of Hamiltonian transfer functions, since JAJ = A⊤ and J2 = −I,
we have (−1)k−1JAkJ = (Ak)⊤ for k = 1, 2, . . . , which implies that the characteristic
polynomial of A is even and

trace(Ak) = 0 holds for all odd k’s.

Therefore the pole placement map is equivalent to the map

ψ : Sym(n) −→ C
δ/2

F �−→ (trace(A + BFC)2, trace(A + BFC)4, . . . , trace(A + BFC)δ),

(3.2)

and its Jacobian at 0 is given by

dψ0(F ) = (2 trace(ABFC), 4 trace(A3BFC) . . . , δ trace(Aδ−1BFC)).

We first consider the case of symmetric transfer functions. Let B be any real
nonzero matrix and L = {BFB⊤ | F ∈ Sym(n)}. Then L �⊂ sl(δ,C) and dimL ≥ δ.
By Lemma 3.4 there exists an orthogonal matrix S ∈ O(δ,C) such that π |SLS−1 is
surjective. Let D = diag(1, 2, . . . , δ) and A = S−1DS. Then

dφ0(F ) = (trace(BFB⊤), 2 trace(ABFB⊤), . . . , δ trace(Aδ−1BFB⊤))

= (trace(SBFB⊤S−1), 2 trace(DSBFB⊤S−1), . . . , δ trace(Dδ−1SBFB⊤S−1))

= π(SBFB⊤S−1)V,

where

V =

⎡

⎢

⎢

⎢

⎣

1 1 · · · 1
1 2 · · · 2δ−1

...
...

...
1 δ · · · δδ−1

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

1 0 · · · 0
0 2 · · · 0
...

...
...

0 0 · · · δ

⎤

⎥

⎥

⎥

⎦

.

Since π|SLS−1 is surjective and V is nonsingular, dφ0 is onto.
For the case of Hamiltonian transfer functions, let

B =

[

0
B1

]

and C =
[

B⊤
1 0

]

,

where B1 is any real nonzero δ
2 × n matrix and L = {B1FB⊤

1 | F ∈ Sym(n)}. Then
L �⊂ sl(δ/2,C). By Lemma 3.4 there exists an orthogonal matrix S1 ∈ O(δ/2,C) such

that π : S1LS
−1
1 �→ C

δ

2 is surjective. Let D1 = diag(1, 2, . . . , δ/2),

S =

[

S1 0
0 S1

]

, D =

[

0 D1

D1 0

]

,

and A = S−1DS. Note that D and S are Hamiltonian and symplectic matrices,
respectively. In particular, A is Hamiltonian. Then

dψ0(F ) = (2 trace(ABFC), 4 trace(A3BFC), . . . , δ trace(Aδ−1BFC))

= (2 trace(DSBFCS−1), 4 trace(D3SBFCS−1), . . . , δ trace(Dδ−1SBFCS−1))

= (2 trace(D1S1B1FB⊤
1 S−1

1 ), . . . , δ trace(Dδ−1
1 S1B1FB⊤

1 S−1
1 ))

= π(S1B1FB⊤
1 S−1

1 )U,
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where

U =

⎡

⎢

⎢

⎢

⎣

1 1 · · · 1
2 23 · · · 2δ−1

...
...

...
δ
2

(

δ
2

)3
· · ·

(

δ
2

)δ−1

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

2 0 · · · 0
0 4 · · · 0
...

...
...

0 0 · · · δ

⎤

⎥

⎥

⎥

⎦

.

Since π|S1B1FB⊤

1
S−1

1

is surjective and U is nonsingular, dψ0 is onto.

The second main theorem in this paper deals with the limit case δ =
(

n+1
2

)

, where
we can prove a more precise statement.

Theorem 3.6. Let δ =
(

n+1
2

)

in the symmetric case, and δ = n(n + 1) for
Hamiltonian systems. Then for a generic set of n × n symmetric (or Hamiltonian)
transfer functions of degree δ, the number of pole assigning complex symmetric feed-
back compensators is finite, and when counted with multiplicities there are exactly

d(n) := 2(n2)
(

n+1
2

)

! 1! 2! · · · (n− 1)!

1! 3! · · · (2n− 1)!
=

(

n+1
2

)

!
∏n−1

i=0 (2 i + 1)
n−i

(3.3)

many symmetric compensators as solution.
One immediately computes d(1) = 1, d(2) = 2, d(3) = 24, d(4) = 3 · 28, d(5) =

11·13·211, and d(6) = 13·17·19·218. The integer sequence d(n) is sequence A005118 in
Sloane’s data bank of integer sequences [33]. The sequence has several combinatorial
and geometric interpretations. For the context of this paper it will be important that
d(n) is equal to the degree of the Lagrangian Grassmannian, the projective variety of
all maximal isotropic subspaces in a complex vector space of dimension 2n.

As for the Grassmann variety, classical Schubert calculus [30] (see [11, Chap-
ter 14] for a modern treatment of Schubert calculus) provides the tools to compute
the degree of the Lagrangian Grassmannian. An explicit formula for the integers d(n)
was probably first given by Hiller [17], who computed

d(n) =

⎧

⎪

⎨

⎪

⎩

2(n2) (n+1

2 )! 2! 4! ··· (n−2)!

(n+1)1! (n+3)! ··· (2n−1)! if n is even,

2(n2) (n+1

2 )! 2! 4! ··· (n−2)!

(n+1)1! (n+3)! ··· (2n−1)! if n is odd.

(3.4)

The hard combinatorial work to derive formula (3.4) is actually due to Schur [31].
It has been pointed out by Totaro [36] that d(n) is equal to the Kostka number
Kλ,(1N ), where λ is the partition λ = (n, n − 1, . . . , 1) and N =

(

n+1
2

)

. Totaro
derived an explicit formula for more general Kostka numbers, and Totaro’s formula
specializes to formula (3.3). Readers interested in combinatorial aspects of Kostka
numbers should consult the book by Macdonald [22].

It can be seen from the formulas that d(n) is always even, except for n = 1. This
is related to the fact that the symmetric output feedback pole placement problem is
not generically solvable over the reals. Actually, more can be said about d(n). The
sequence

d̃(n) := d(n)2−(n2)

is the degree of the spinor variety, the complex projective variety SO(2n+1)/U(n) [17];
in particular, d̃(n) represents an integer sequence again. The sequence d̃(n) appears
under the number A003121 in Sloane’s data bank [33].
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The proof of Theorem 3.6 will occupy the rest of this section. The proof will
necessitate a geometric reformulation and several technical lemmas.

First we will describe the closed loop characteristic equation in a slightly more
convenient way. Consider a left coprime factorization D−1(s)N(s) = G(s) of the
symmetric or Hamiltonian transfer function G(s). Let F ∈ Sym(n) be an n × n
complex symmetric matrix. When the feedback law y = −Fu+ v is applied, then up
to a constant factor the characteristic polynomial ϕ(s) is also equal to

det

[

D(s) N(s)
F In

]

.(3.5)

The vector space Sym(n) describing the set of n×n complex symmetric matrices
is not very well suited to invoking strong theorems from algebraic geometry and
intersection theory [11], as these usually require compactness assumptions on the
underlying spaces. A similar difficulty exists for the static output pole placement
problem. Brockett and Byrnes showed in [3] how to translate the static pole placement
problem into a geometric problem. This then resulted in an intersection problem on
a compact Grassmann variety, and methods from classical Schubert calculus [30, 35]
could be invoked.

We will follow this compactification strategy for Problem 3.1 as well. This will
lead us to an intersection problem on some projective variety. In order to do so we
therefore need a good compactification of Sym(n). For this identify the row span
rowsp [F In] of any symmetric matrix F with an element of the Grassmann variety
Grass(n,C2n). Using the Plücker embedding

Grass(n,C2n) −→ P
(

∧n
C

2n
)

= P
N , N =

(

2n

n

)

− 1,

we can then identify Sym(n) with a quasi-projective subset of the complex projective
variety P

N .

Definition 3.7. The algebraic closure of the set

{rowsp [F In] | F ∈ Sym(n)}

is called the complex Lagrangian Grassmann manifold. It will be denoted by LG(n).

It is well known that LG(n) is a smooth projective variety of dimension
(

n+1
2

)

, the
dimension of Sym(n). Note that every element in LG(n) can be simply represented
by a subspace of the form rowsp [F1 F2], where F1(F2)

⊤ is a symmetric matrix, i.e.,
F1(F2)

⊤ = F2(F1)
⊤. The elements of LG(n) are thus exactly the Lagrangian sub-

spaces of C
2n. The subspace rowsp [F1 F2] coincides with the subspace rowsp [S In]

associated with an element S of Sym(n) if and only if F2 is invertible. Moreover, then
S = (F2)

−1F1. When F2 is singular one can still define a characteristic polynomial
through

ϕ(s) := det

[

D(s) N(s)
F1 F2

]

.(3.6)

Note that in the Hamiltonian case, ϕ(s) is necessarily even; i.e.,

ϕ(s) = ϕ(−s).
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Let fi, i = 0, . . . , N , be the Plücker coordinates of rowsp [F1 F2]. In terms of the
Plücker coordinates the characteristic equation can then be written as

det

[

D(s) N(s)
F1 F2

]

=

N
∑

i=0

pi(s)fi,(3.7)

where pi(s) is the cofactor of fi in the determinant (3.7).
Let Z ⊂ P

N be the linear subspace defined by

Z =

{

z ∈ P
N |

N
∑

i=0

pi(s)zi = 0

}

.(3.8)

Following [19, 27, 28, 37] we identify a closed loop characteristic polynomial ϕ(s) with
a point in P

δ. In analogy to the situation of the static pole placement problem consid-
ered in [3, 37] (compare also with [28, section 5]), one has a well-defined characteristic
map

χ : LG(n) −Z −→ P
δ

rowsp [F1 F2] �−→
∑N

i=0 fipi(s)
(3.9)

in the complex symmetric case and

χ′ : LG(n) −Z −→ P
δ/2

rowsp [F1 F2] �−→ even part of
∑N

i=0 fipi(s)
(3.10)

in the Hamiltonian case. In the latter case the reduction in dimension of the projective
space arises due to the evenness of the closed loop characteristic polynomial, so that
in the second map only the coefficients of the even terms of

∑N
i=0 fipi(s) appear.

Recall the notion of degree of a variety [13, Chapter I, section 7] and the notion
of a central projection (see [32, Chapter I, section 4]). The geometric properties of
the map χ are as follows.

Theorem 3.8. The maps χ, χ′ define central projections. In particular, if Z ∩
LG(n) = ∅ and dim LG(n) =

(

n+1
2

)

= δ, then χ is surjective, and there are deg LG(n)
many preimages (counted with multiplicity) for each point in P

δ, where deg LG(n)
is the degree of the Lagrangian manifold LG(n) in P

N . Similarly, if dim LG(n) =
(

n+1
2

)

= δ/2, then χ′ is surjective with exactly deg LG(n) many preimage points in
each fiber.

Proof. By definition (see, e.g., [26, 32]), χ represents a central projection of
LG(n) from the center Z to P

δ. When Z ∩ LG(n) = ∅ and dim LG(n) =
(

n+1
2

)

= δ,
then χ is a finite morphism [32, Chapter I, section 5, Theorem 7] and onto of degree
deg LG(n) [26, Corollary 5.6]. Similar argument can be applied to χ′.

The set Z∩LG(n) is sometimes referred to as the base locus. The interesting part
of the theorem occurs when the base locus Z ∩LG(n) = ∅ since in this situation very
specific information on the number of solutions is provided. If Z ∩ LG(n) = ∅ and
(

n+1
2

)

= δ (or n(n+ 1) = δ), then one says that χ (or χ′) describes a finite morphism

from the projective variety LG(n) onto the projective space P
δ (or P

δ/2).
This last situation is most desirable, and this motivates the following definition.
Definition 3.9. A particular symmetric transfer function G(s) is called non-

degenerate if Z ∩ LG(n) = ∅. A system which is not nondegenerate will be called
degenerate.
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In terms of matrices a symmetric transfer function G(s) = D(s)−1N(s) is degen-
erate as soon as there is a Lagrangian subspace rowsp [F1 F2] ∈ LG(n), such that

det

[

D(s) N(s)
F1 F2

]

= 0.

In more geometric language this means that the Hermann–Martin curve [25] de-
fined by rowsp [D(s) N(s)] is fully contained in a Lagrangian hyperplane defined by
rowsp [F1 F2]. In the study of the static pole placement problem [3] and the dy-
namic pole placement problem [28], definitions analogous to Definition 3.9 played an
important role.

The next lemmas give specific information as to under which conditions Z ∩
LG(n) = ∅, i.e., under which conditions a symmetric transfer function is nondegener-
ate. Similar results were crucial in proving the pole placement results in [3, 19, 28].

Lemma 3.10. If δ <
(

n+1
2

)

= dim LG(n), then every n × n symmetric transfer
function of McMillan degree δ is degenerate. Similarly, any n×n Hamiltonian transfer
function of McMillan degree δ is degenerate if δ < n(n + 1) = 2 dim LG(n).

Proof. dimZ ≥ N − δ − 1 as Z is defined by δ + 1 linear equations (δ/2 + 1 in
the Hamiltonian case). If dim LG(n) > δ (or dim LG(n) > δ/2 in the Hamiltonian
case), then Z ∩ LG(n) is nonempty by the (projective) dimension theorem (see, e.g.,
[13, Chapter I, Theorem 7.2]).

Lemma 3.11. If δ =
(

n+1
2

)

= dim LG(n) (or δ = n(n + 1)), then a generic
set of n × n symmetric (or Hamiltonian) transfer functions of McMillan degree δ is
nondegenerate.

Proof. Let Q be the set of all n × n symmetric transfer functions of McMillan
degree n. Q can be given the structure of a quasi-projective variety. For this, recall
the definition of the projective variety Kδ

n,n that was introduced in [28] and which
compactifies the set of all n× n transfer functions of McMillan degree δ. An element
(Hermann–Martin curve) rowsp [D(s) N(s)] ∈ Kδ

n,n describes an element of Q as soon

as deg detD(s) = δ and D(s)N(s)⊤ = N(s)D(s)⊤. The last condition translates into
some linear conditions to be satisfied among the Plücker coordinates of Kδ

n,n. The

resulting subvariety of Kδ
n,n constitutes a natural compactification of Q, and Q itself

is a quasi-projective subset.
Consider now the coincidence set

S :=

{

(D(s)−1N(s); F1, F2) ∈ Q× LG(n) | det

[

D(s) N(s)
F1 F2

]

= 0

}

.

Since LG(n) is projective, the projection onto Q is an algebraic set by the main
theorem of elimination theory (see, e.g., [26]). The set of nondegenerate systems
therefore forms a Zariski open subset of Q. We have shown the result if we can
exhibit one n×n transfer function of McMillan degree

(

n+1
2

)

which is nondegenerate.
The next lemma gives such an example, and the claim therefore follows. Note that
the previous arguments run in a completely similar manner for the Hamiltonian case,
and it therefore remains to construct one example as well. However, the symmetric
Hamiltonian transfer function G(s2) is exactly such an example.

Lemma 3.12. The symmetric transfer function

G(s) :=

⎡

⎢

⎢

⎢

⎣

1
s

1
s2

. . .
1
sn

⎤

⎥

⎥

⎥

⎦
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is nondegenerate.
Proof. First it is clear that G(s) has McMillan degree δ =

(

n+1
2

)

and that

[D(s) N(s)] =

⎡

⎢

⎢

⎢

⎣

s 1
s2 1

. . .
. . .

sn 1

⎤

⎥

⎥

⎥

⎦

forms a left coprime factorization of G(s). Let

R :=

⎡

⎢

⎢

⎣

1
.·

.·
1

⎤

⎥

⎥

⎦

and assume by contradiction that G(s) is degenerate. Then there exists rowsp [F1 F2] ∈
LG(n), such that

0 = det

[

D(s) N(s)
F1 F2

]

= det

[

D(s) N(s)R
F1 F2R

]

.(3.11)

Let S ∈ Gln be the matrix which transforms the n × 2n matrix [F1 F2R] into row
reduced echelon form, i.e.,

(3.12) [(SF1) (SF2R)] =
⎡

⎢

⎢

⎢

⎣

∗ · · · ∗ 1 0 · · · 0 0 · · · 0 · · · 0 0 0 · · · 0
∗ · · · ∗ 0 ∗ · · · ∗ 1 · · · 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

∗ · · · ∗ 0 ∗ · · · ∗ 0 · · · ∗ · · · ∗ 1 0 · · · 0

⎤

⎥

⎥

⎥

⎦

=: [F̃1 F̃2].

Let

i1 < · · · ik ≤ n < ik+1 < · · · in ≤ 2n

be the pivot indices. We claim that the first k pivot indices determine the last n− k
pivot indices uniquely. For this let î1 < · · · < în−k be the complementary indices of
the indices {i1, . . . ik} inside the set {1, . . . , n}. Then we claim that

ik+1 = 2n− în−k + 1

...

in = 2n− î1 + 1.

Indeed, if this is not the case, then it follows that F̃1R(F̃2)
⊤ cannot be symmetric for

any choice of values in the row reduced echelon form (3.12). On the other hand, the
matrix F̃1R(F̃2)

⊤ has to be symmetric since by assumption F1(F2)
⊤ is symmetric.

The indices i1, . . . , in describe the maximal Plücker coordinate (with regard to
the Bruhat order) of rowsp [F1 F2R] which is nonzero, and the corresponding cofactor

of [D(s) N(s)R] is computed as ±sα, where α =
∑n−k

ℓ=1 îℓ. In general there are other
full-size minors (Plücker coordinates) of [D(s) N(s)R] which have the form ±sα. All
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other Plücker coordinates with this value, however, are not comparable with regard
to the Bruhat order, and since i1, . . . , in was the maximal nonzero Plücker coordinate
of rowsp [F1 F2R], it follows that the determinant expansion in (3.11) cannot be zero.
This is a contradiction, and it follows that G(s) is nondegenerate.

Remark 3.13. For the static pole placement problem Brockett and Byrnes [3]
showed that the osculating normal curve

rowsp

⎡

⎢

⎢

⎢

⎣

1 s s2 . . . . . . sm+p−1

0 1 2s . . . . . .
(

m+p−1
1

)

sm+p−2

...
. . .

...

0 . . . 0 1 . . .
(

m+p−1
m−1

)

sp

⎤

⎥

⎥

⎥

⎦

∈ Grass(m,Km+p)

is nondegenerate. Also in this situation the Plücker coordinates have the simple form
±sβ , where β =

∑m
ℓ=1 iℓ − ℓ and there are no two Plücker coordinates which are

comparable in the Bruhat order and give rise to the same monomial sβ .
We have now all pieces together in order to prove the main result.
Proof of Theorem 3.6. Without loss of generality we focus on the case of symmetric

transfer functions. The arguments for the Hamiltonian case run in a completely
similar manner. Note, however, that the closed loop characteristic polynomial of a
Hamiltonian system is always an even polynomial. Therefore our definition of generic
pole assignability for Hamiltonian systems restricts to the space of even polynomials.
Since the dimension of the space of even monic polynomials of degree δ is δ/2, the
appropriate condition for Hamiltonian systems is δ/2 ≤

(

n+1
2

)

. With these comments
in mind, we return to the proof for symmetric transfer functions.

When δ >
(

n+1
2

)

, then a simple dimension argument shows that the image of the

characteristic map χ described in (3.9) has dimension at most
(

n+1
2

)

and therefore
there is a Zariski open set in P

δ not in the image of χ.
When δ =

(

n+1
2

)

, then Lemmas 3.11 and 3.12 show that there is a generic set of
n×n symmetric transfer functions of McMillan degree δ which are nondegenerate. The
characteristic map (3.9) therefore has no base locus, and every point in the image of
χ has deg LG(n) preimage points when counted with multiplicities. The degree of the
variety LG(n) was recently computed by Totaro [36] and resulted in the number (3.3).

A priori the geometric formulation only predicts deg LG(n) many solutions inside
LG(n), and it is not clear if all these solutions correspond to regular feedback laws of
the form u = −Fy + v. If G(s) is a strictly proper symmetric transfer function, then
this is indeed the case and the same argument applies as in [3].
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