Header

UZH-Logo

Maintenance Infos

A refined finite element convergence theory for highly indefinite Helmholtz problems


Sauter, S A (2006). A refined finite element convergence theory for highly indefinite Helmholtz problems. Computing, 78(2):101-115.

Statistics

Citations

Dimensions.ai Metrics
22 citations in Web of Science®
23 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

177 downloads since deposited on 29 Nov 2010
13 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Scopus Subject Areas:Physical Sciences > Software
Physical Sciences > Theoretical Computer Science
Physical Sciences > Numerical Analysis
Physical Sciences > Computer Science Applications
Physical Sciences > Computational Theory and Mathematics
Physical Sciences > Computational Mathematics
Language:English
Date:2006
Deposited On:29 Nov 2010 16:25
Last Modified:03 Dec 2023 02:41
Publisher:Springer
ISSN:0010-485X
Additional Information:The original publication is available at www.springerlink.com
OA Status:Green
Publisher DOI:https://doi.org/10.1007/s00607-006-0177-z
  • Content: Accepted Version
  • Content: Published Version
  • Language: English
  • Description: Nationallizenz 142-005