Header

UZH-Logo

Maintenance Infos

DSEC: A Stereo Event Camera Dataset for Driving Scenarios


Gehrig, Mathias; Aarents, Willem; Gehrig, Daniel; Scaramuzza, Davide (2022). DSEC: A Stereo Event Camera Dataset for Driving Scenarios. IEEE Robotics and Automation Letters, 6(3):4947-4954.

Abstract

Once an academic venture, autonomous driving has received unparalleled corporate funding in the last decade. Still, operating conditions of current autonomous cars are mostly restricted to ideal scenarios. This means that driving in challenging illumination conditions such as night, sunrise, and sunset remains an open problem. In these cases, standard cameras are being pushed to their limits in terms of low light and high dynamic range performance. To address these challenges, we propose, DSEC, a new dataset that contains such demanding illumination conditions and provides a rich set of sensory data. DSEC offers data from a wide-baseline stereo setup of two color frame cameras and two high-resolution monochrome event cameras. In addition, we collect lidar data and RTK GPS measurements, both hardware synchronized with all camera data. One of the distinctive features of this dataset is the inclusion of high-resolution event cameras. Event cameras have received increasing attention for their high temporal resolution and high dynamic range performance. However, due to their novelty, event camera datasets in driving scenarios are rare. This work presents the first high resolution, large scale stereo dataset with event cameras. The dataset contains 53 sequences collected by driving in a variety of illumination conditions and provides ground truth disparity for the development and evaluation of event-based stereo algorithms.

Abstract

Once an academic venture, autonomous driving has received unparalleled corporate funding in the last decade. Still, operating conditions of current autonomous cars are mostly restricted to ideal scenarios. This means that driving in challenging illumination conditions such as night, sunrise, and sunset remains an open problem. In these cases, standard cameras are being pushed to their limits in terms of low light and high dynamic range performance. To address these challenges, we propose, DSEC, a new dataset that contains such demanding illumination conditions and provides a rich set of sensory data. DSEC offers data from a wide-baseline stereo setup of two color frame cameras and two high-resolution monochrome event cameras. In addition, we collect lidar data and RTK GPS measurements, both hardware synchronized with all camera data. One of the distinctive features of this dataset is the inclusion of high-resolution event cameras. Event cameras have received increasing attention for their high temporal resolution and high dynamic range performance. However, due to their novelty, event camera datasets in driving scenarios are rare. This work presents the first high resolution, large scale stereo dataset with event cameras. The dataset contains 53 sequences collected by driving in a variety of illumination conditions and provides ground truth disparity for the development and evaluation of event-based stereo algorithms.

Statistics

Citations

Dimensions.ai Metrics
69 citations in Web of Science®
92 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

95 downloads since deposited on 17 Feb 2022
11 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Informatics
Dewey Decimal Classification:000 Computer science, knowledge & systems
Scopus Subject Areas:Physical Sciences > Control and Systems Engineering
Physical Sciences > Biomedical Engineering
Physical Sciences > Human-Computer Interaction
Physical Sciences > Mechanical Engineering
Physical Sciences > Computer Vision and Pattern Recognition
Physical Sciences > Computer Science Applications
Physical Sciences > Control and Optimization
Physical Sciences > Artificial Intelligence
Scope:Discipline-based scholarship (basic research)
Language:English
Date:2022
Deposited On:17 Feb 2022 09:43
Last Modified:27 Apr 2024 01:35
Publisher:Institute of Electrical and Electronics Engineers
ISSN:2377-3766
OA Status:Green
Publisher DOI:https://doi.org/10.1109/LRA.2021.3068942
Other Identification Number:merlin-id:22158
  • Content: Accepted Version