Header

UZH-Logo

Maintenance Infos

Performance, Precision, and Payloads: Adaptive Nonlinear MPC for Quadrotors


Hanover, Drew; Foehn, Philipp; Sun, Sihao; Kaufmann, Elia; Scaramuzza, Davide (2022). Performance, Precision, and Payloads: Adaptive Nonlinear MPC for Quadrotors. IEEE Robotics and Automation Letters, 7(2):690-697.

Abstract

Agile quadrotor flight in challenging environments has the potential to revolutionize shipping, transportation, and search and rescue applications. Nonlinear model predictive control (NMPC) has recently shown promising results for agile quadrotor control, but relies on highly accurate models for maximum performance. Hence, model uncertainties in the form of unmodeled complex aerodynamic effects, varying payloads and parameter mismatch will degrade overall system performance. In this letter, we propose L1 -NMPC, a novel hybrid adaptive NMPC to learn model uncertainties online and immediately compensate for them, drastically improving performance over the non-adaptive baseline with minimal computational overhead. Our proposed architecture generalizes to many different environments from which we evaluate wind, unknown payloads, and highly agile flight conditions. The proposed method demonstrates immense flexibility and robustness, with more than 90% tracking error reduction over non-adaptive NMPC under large unknown disturbances and without any gain tuning. In addition, the same controller with identical gains can accurately fly highly agile racing trajectories exhibiting top speeds of 70 km/h, offering tracking performance improvements of around 50% relative to the non-adaptive NMPC baseline.

Abstract

Agile quadrotor flight in challenging environments has the potential to revolutionize shipping, transportation, and search and rescue applications. Nonlinear model predictive control (NMPC) has recently shown promising results for agile quadrotor control, but relies on highly accurate models for maximum performance. Hence, model uncertainties in the form of unmodeled complex aerodynamic effects, varying payloads and parameter mismatch will degrade overall system performance. In this letter, we propose L1 -NMPC, a novel hybrid adaptive NMPC to learn model uncertainties online and immediately compensate for them, drastically improving performance over the non-adaptive baseline with minimal computational overhead. Our proposed architecture generalizes to many different environments from which we evaluate wind, unknown payloads, and highly agile flight conditions. The proposed method demonstrates immense flexibility and robustness, with more than 90% tracking error reduction over non-adaptive NMPC under large unknown disturbances and without any gain tuning. In addition, the same controller with identical gains can accurately fly highly agile racing trajectories exhibiting top speeds of 70 km/h, offering tracking performance improvements of around 50% relative to the non-adaptive NMPC baseline.

Statistics

Citations

Dimensions.ai Metrics
38 citations in Web of Science®
42 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

171 downloads since deposited on 17 Feb 2022
47 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Informatics
Dewey Decimal Classification:000 Computer science, knowledge & systems
Scopus Subject Areas:Physical Sciences > Control and Systems Engineering
Physical Sciences > Biomedical Engineering
Physical Sciences > Human-Computer Interaction
Physical Sciences > Mechanical Engineering
Physical Sciences > Computer Vision and Pattern Recognition
Physical Sciences > Computer Science Applications
Physical Sciences > Control and Optimization
Physical Sciences > Artificial Intelligence
Scope:Discipline-based scholarship (basic research)
Language:English
Date:2022
Deposited On:17 Feb 2022 09:51
Last Modified:27 Apr 2024 01:35
Publisher:Institute of Electrical and Electronics Engineers
ISSN:2377-3766
OA Status:Green
Publisher DOI:https://doi.org/10.1109/LRA.2021.3131690
Other Identification Number:merlin-id:22177
  • Content: Accepted Version