Abstract
This work focuses on the formulation of a four-equation model for simulating unsteady two-phase mixtures with phase transition and strong discontinuities. The main assumption consists in a homogeneous temperature, pressure and velocity fields between the two phases. Specifically, we present the extension of a residual distribution scheme to solve a four-equation two-phase system with phase transition written in a non-conservative form, i.e. in terms of internal energy instead of the classical total energy approach. This non-conservative formulation allows avoiding the classical oscillations obtained by many approaches, that might appear for the pressure profile across contact discontinuities. The proposed method relies on a finite element based residual distribution scheme which is designed for an explicit second-order time stepping. We test the non-conservative residual distribution scheme on several benchmark problems and assess the results via a cross-validation with the approximated solution obtained via a conservative approach, based on a HLLC scheme. Furthermore, we check both methods for mesh convergence and show the effective robustness on very severe test cases, that involve both problems with and without phase transition.