Header

UZH-Logo

Maintenance Infos

Identification of genes required for gold and silver tolerance in Burkholderia cenocepacia H111 by transposon sequencing


Gualdi, Stefano; Agnoli, Kirsty; Vitale, Alessandra; Higgins, Steven; Eberl, Leo (2022). Identification of genes required for gold and silver tolerance in Burkholderia cenocepacia H111 by transposon sequencing. Environmental Microbiology, 24(2):737-751.

Abstract

Members of the genus Burkholderia show remarkable abilities to adapt to a wide range of environmental conditions and is frequently isolated from soils contaminated with heavy metals. In this study, we used a transposon sequencing approach to identify 138 and 164 genes that provide a benefit for growth of the opportunistic pathogen Burkholderia cenocepacia H111 in the presence of silver and gold ions respectively. The data suggest that arginine metabolism and citrate biosynthesis are important for silver tolerance, while components of an ABC transporter (BCAL0307-BCAL0308) and de novo cysteine biosynthesis are required for tolerance to gold ions. We show that determinants that affect tolerance to both metal ions include the two-component systems BCAL0497/99 and BCAL2830/31 and genes that are involved in maintaining the integrity of the cell envelope, suggesting that membrane proteins represent important targets of silver and gold ions. Furthermore, we show that that the P-type ATPase CadA (BCAL0055), which confers tolerance to cadmium contributes to silver but not gold tolerance. Our results may be useful for improving the antibacterial effect of silver and gold ions to combat drug-resistant pathogens.

Abstract

Members of the genus Burkholderia show remarkable abilities to adapt to a wide range of environmental conditions and is frequently isolated from soils contaminated with heavy metals. In this study, we used a transposon sequencing approach to identify 138 and 164 genes that provide a benefit for growth of the opportunistic pathogen Burkholderia cenocepacia H111 in the presence of silver and gold ions respectively. The data suggest that arginine metabolism and citrate biosynthesis are important for silver tolerance, while components of an ABC transporter (BCAL0307-BCAL0308) and de novo cysteine biosynthesis are required for tolerance to gold ions. We show that determinants that affect tolerance to both metal ions include the two-component systems BCAL0497/99 and BCAL2830/31 and genes that are involved in maintaining the integrity of the cell envelope, suggesting that membrane proteins represent important targets of silver and gold ions. Furthermore, we show that that the P-type ATPase CadA (BCAL0055), which confers tolerance to cadmium contributes to silver but not gold tolerance. Our results may be useful for improving the antibacterial effect of silver and gold ions to combat drug-resistant pathogens.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

27 downloads since deposited on 04 Mar 2022
20 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
07 Faculty of Science > Zurich-Basel Plant Science Center
Dewey Decimal Classification:580 Plants (Botany)
Scopus Subject Areas:Life Sciences > Microbiology
Life Sciences > Ecology, Evolution, Behavior and Systematics
Uncontrolled Keywords:Ecology, Evolution, Behavior and Systematics, Microbiology
Language:English
Date:1 February 2022
Deposited On:04 Mar 2022 12:03
Last Modified:28 May 2024 01:36
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:1462-2912
OA Status:Green
Publisher DOI:https://doi.org/10.1111/1462-2920.15471
PubMed ID:33734565