Navigation auf zora.uzh.ch

Search ZORA

ZORA (Zurich Open Repository and Archive)

Local and global limit denotators and the classification of global compositions

Mazzola, G (2005). Local and global limit denotators and the classification of global compositions. In: Fripertinger, H. Colloquium on Mathematical Music Theory. Graz: Karl-Franzens-Universität, 91-101.

Abstract

It is shown that the module complexes used for the classification theory of global compositions are denotators of limit type, a special instance of which is also encountered in the network theory of David Lewin [Music Theory Spectrum 12 (1990), no. 1, 83–120] and Henry Klumpenhouwer. We then sketch a theory of global limit denotators and show that there is a canonical functor into the category of global compositions. This provides us with invariants for the classification of global limit denotators

Additional indexing

Item Type:Book Section, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Uncontrolled Keywords:classification theory, global compositions, global limit denotators, Klumpenhouwer networks, local limit denotators, moduli spaces
Language:English
Date:2005
Deposited On:29 Nov 2010 16:26
Last Modified:29 Jul 2020 19:38
Publisher:Karl-Franzens-Universität
Series Name:Grazer Mathematische Berichte
Number:347
ISSN:1016-7692
OA Status:Closed
Related URLs:http://www.ams.org/mathscinet-getitem?mr=2229148
http://www.zentralblatt-math.org/zbmath/search/?q=an%3A1144.18005
Full text not available from this repository.

Metadata Export

Statistics

Authors, Affiliations, Collaborations

Similar Publications