Header

UZH-Logo

Maintenance Infos

PrimPol-mediated repriming facilitates replication traverse of DNA interstrand crosslinks


González-Acosta, Daniel; Blanco-Romero, Elena; Ubieto-Capella, Patricia; Mutreja, Karun; Míguez, Samuel; Llanos, Susana; García, Fernando; Muñoz, Javier; Blanco, Luis; Lopes, Massimo; Méndez, Juan (2021). PrimPol-mediated repriming facilitates replication traverse of DNA interstrand crosslinks. EMBO Journal Online, 40(14):e106355.

Abstract

DNA interstrand crosslinks (ICLs) induced by endogenous aldehydes or chemotherapeutic agents interfere with essential processes such as replication and transcription. ICL recognition and repair by the Fanconi Anemia pathway require the formation of an X-shaped DNA structure that may arise from convergence of two replication forks at the crosslink or traversing of the lesion by a single replication fork. Here, we report that ICL traverse strictly requires DNA repriming events downstream of the lesion, which are carried out by PrimPol, the second primase-polymerase identified in mammalian cells after Polα/Primase. The recruitment of PrimPol to the vicinity of ICLs depends on its interaction with RPA, but not on FANCM translocase or the BLM/TOP3A/RMI1-2 (BTR) complex that also participate in ICL traverse. Genetic ablation of PRIMPOL makes cells more dependent on the fork convergence mechanism to initiate ICL repair, and PRIMPOL KO cells and mice display hypersensitivity to ICL-inducing drugs. These results open the possibility of targeting PrimPol activity to enhance the efficacy of chemotherapy based on DNA crosslinking agents.

Abstract

DNA interstrand crosslinks (ICLs) induced by endogenous aldehydes or chemotherapeutic agents interfere with essential processes such as replication and transcription. ICL recognition and repair by the Fanconi Anemia pathway require the formation of an X-shaped DNA structure that may arise from convergence of two replication forks at the crosslink or traversing of the lesion by a single replication fork. Here, we report that ICL traverse strictly requires DNA repriming events downstream of the lesion, which are carried out by PrimPol, the second primase-polymerase identified in mammalian cells after Polα/Primase. The recruitment of PrimPol to the vicinity of ICLs depends on its interaction with RPA, but not on FANCM translocase or the BLM/TOP3A/RMI1-2 (BTR) complex that also participate in ICL traverse. Genetic ablation of PRIMPOL makes cells more dependent on the fork convergence mechanism to initiate ICL repair, and PRIMPOL KO cells and mice display hypersensitivity to ICL-inducing drugs. These results open the possibility of targeting PrimPol activity to enhance the efficacy of chemotherapy based on DNA crosslinking agents.

Statistics

Citations

Dimensions.ai Metrics
29 citations in Web of Science®
32 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

26 downloads since deposited on 16 Mar 2022
8 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Molecular Cancer Research
07 Faculty of Science > Institute of Molecular Cancer Research
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > General Neuroscience
Life Sciences > Molecular Biology
Life Sciences > General Biochemistry, Genetics and Molecular Biology
Life Sciences > General Immunology and Microbiology
Language:English
Date:15 July 2021
Deposited On:16 Mar 2022 15:31
Last Modified:27 Apr 2024 01:36
Publisher:Nature Publishing Group
ISSN:0261-4189
OA Status:Hybrid
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.15252/embj.2020106355
PubMed ID:34128550
  • Content: Published Version
  • Licence: Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)