Abstract
In this short paper, we intend to describe one way to construct arbitrarily high order kinetic schemes on regular meshes. The method can be arbitrarily high order in space and time, run at least CFL one, is asymptotic preserving and computationally explicit, i.e., the computational costs are of the same order of a fully explicit scheme. We also introduce a nonlinear stability method that enables to simulate problems with discontinuities, and it does not kill the accuracy for smooth regular solutions.