Abstract
Background: Growing evidence points towards dysfunction of the ventral striatum as a neural substrate of motivational impairments in schizophrenia. Ventral striatal activity during reward anticipation is generally reduced in patients with schizophrenia and specifically correlates with apathy. However, little is known about the cortico-striatal functional connectivity in patients with schizophrenia during reward anticipation and its relation to negative symptoms.
Objectives: The aim of this study was to identify categorical group differences in ventral striatal functional connectivity during reward anticipation between patients with schizophrenia and healthy controls, and dimensional associations between cortico-striatal functional connectivity and negative symptom severity.
Method: A total of 40 patients with schizophrenia (10 females) and 33 healthy controls (8 females) were included from two previously published studies. All participants performed a variant of the Monetary Incentive Delay Task while undergoing event-related fMRI. Functional connectivity was assessed using psychophysical interactions (PPI) with the left and right ventral striatum as seeds and the contrast [High Reward Anticipation - No Reward Anticipation]. Negative symptoms were assessed using the Brief Negative Symptom Scale.
Results: Compared to controls, patients with schizophrenia showed increased functional connectivity between the left ventral striatum and the left precuneus and right parahippocampal gyrus, two hubs of the default mode network (cluster-level threshold: FWE, p < .05). In addition, we found a negative association between apathy scores on the BNSS and increased functional connectivity between the left ventral striatum and the left ventral anterior insula / putamen and the left inferior frontal gyrus / dorsal anterior insula (cluster-level threshold: FWE, p < .05).
Conclusions: Our results indicate that the patterns of increased functional connectivity between the ventral striatum and the dorsal default mode network during reward anticipation could act as a compensatory mechanism to regulate the activity of the ventral striatum. Our results also showed that functional connectivity patterns from the ventral striatum, much like its local activity, is specifically related to apathy, and not diminished expression.