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Linear parabolic equations with singular potentials
HERBERT AMANN

In memoriam Philippe Bénilan

Abstract. By means of maximal regularity techniques we study the solvability of a linear
heat equation with a time-dependent potential under minimal regularity assumptions.

1. Introduction

Let Q be a bounded smooth domain in R” with n > 3. Set " := 01, fix a positive
number T, and put J := (0,T"). Suppose that a is a time-dependent function on Q,
a ‘potential’, and consider the initial boundary value problem

ou—Au+au=0 in Q x J,
u=0 onT xJ, (1.1)
u(-,0) =u® on Q.
It is the purpose of this paper to discuss the well-posedness of (1.1) under minimal
regularity requirements on a and u°.

This problem has recently attracted some interest. More precisely, Brezis and
Cazenave [7, Theorem Al] assume that

o>n/2, a€ Ly(J,L-(Q)). (1.2)
Then they show that, given p > 1 and u® € L,(Q), problem (1.1) has a unique mild
solution in the class
C(7, Lp(R)) N Loojoc (J, Loo(92)). (1.3)
Hereby a mild solution in class (1.3) is an element u of (1.3) satisfying

t
u(t) = etArul + / e(t_T)ADa(T)u(T) dr, teJ,
0

where Ap is the Dirichlet-Laplacian for Q.

2000 Mathematical Subject Classification: 35K20, 35K05.
Key words: Second order linear parabolic boundary value problems, generalized solutions,
optimal regularity.
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They also show that uniqueness of mild solutions holds in the class
Loo(J,Ly(), p>0':=0/(c—1). (1.4)

Every mild solution of (1.1) is a distributional solution, that is, an integrable
function u on 2 x J satisfying

/J (—Bup — A + ap,u) di = (9(0), u®) (1.5)

for all ¢ € D(Q x [0,T)) =D([0,T),D(Q)), where D is the space of all smooth
functions having compact support (in the indicated domain) and

(v, w) ::/vadx.

In [7, Theorem A2] it is proved, in addition, that uniqueness of distributional
solutions of (1.1) holds in the class (1.4), provided p > n/(n — 2) and

a € C(J,L,;5()). (1.6)

This result is optimal in the sense that, given (1.6), uniqueness fails if p = n/(n — 2)
(see [7, Remak A3]).

More recently, Hirata and Tsutsumi [10, Theorem 2.1] show that, given assump-
tion (1.6), there exists a unique distributional solution of (1.1) in the class

C (7, Lp(0) N Lp(, Ly (n-2)(2)) N Lostoc (, Lg())

for any ¢ < oo, provided u° € L,(2) and p > 1. These authors also show [10, The-
orem 4.2] that there exist potentials

a € Loo(J, Ln/Q(Q))

such that uniqueness fails in the class (1.4) for p > n/(n — 2). Furthermore, they
show (see [10, Theorem 3.1]) that there are a satisfying (1.6) and u°® € L;(Q) such
that (1.1) has no distributional solution u such that aw is locally integrable on
Qx Jand u € C(J,Li(Q)).

In both papers the proofs of the well-posedness assertions rely on approxima-
tion arguments, a priori estimates, and properties of the heat semigroup. In this
paper we use a different approach, shedding new light on this problem. Namely,
we employ maximal regularity techniques and, by this way, do not only get far
reaching generalizations but also significant improvements of the above results.

2. Main results

For s € R we denote by H] := H;(Q), 1 < ¢ < o0, the Bessel potential spaces,
and by B, ,:= B, ,(?), 1<p,p< oo, the Besov spaces. (See [14] and [15] for
precise definitions and the main properties of these spaces which we use without
giving further references.)



For ¢,r € (1,00) we set
BS’T::{UEB;T;'yu:O}’ 1/q<s§2,
where v denotes the trace operator for ', and
{ By, —-2+1/9g<s<0,

s
q,T

2.1

B,%), —2<s<-2+1/g @1)
the dual spaces being determined by means of the duality pairing naturally induced
by {-,-) (and usually again denoted by the same symbol).

We suppose that

. n/(n—_2)<q<oo, nj2 < o < oo; } )
e a€C(J,Ly) + Loo(J, Lo).
We also suppose that
¢ 0<s5<2-1/g, 1<r<oo;
e ((f,9),u% € L,(J, H;® x W‘q—l/q(l-w)) % Bq_,i/r‘ } (2.3)

Then we consider the initial boundary value problem
Ou—Au+au=f in Q x J,
u=g¢9 on I xJ (2.4)
u(-,0) =u® on Q.
By an L,(L,)-solution of (2.4) we mean an element u € L,(J, L,) satisfying

/J(—&sap—Aw-FG%U) dt = /J{(%f) —(Ovp,g)r}dt +(p(0),u%)  (2.5)

for every ¢ € D([0,T),Do(f2)), where
Do(Q) :={peDQ); ¢|T =0},

and (-, -)r is the duality pairing between Wq_l/q(F) and W}I_I/q(l“)’ = Wl,/q(F),
naturally induced by

(v,w) — / vw do, v,we C(T),
r

with do denoting the volume measure of I'. Of course, 0, is the normal derivative
with respect to the outer unit normal on I". Observe that (2.5) is formally obtained
by multiplying (2.4) with a test function ¢ € D([0,T),Do((2)), integrating over
Q x J, integrating by parts, and using Green’s formula and the initial and boundary
conditions. By considering test functions ¢ in D(J, D) = D(2 x J) only it follows
from (2.5) that every L,(Lg)-solution of (2.4) is a distributional solution of the
first equation of (2.4).

Now we can formulate the first main result of this paper, the following existence,
uniqueness, and continuity theorem.



THEOREM 2.1. Let assumption (2.2) be valid. Then, given ((f,g),u®) satis-
fying (2.3), there exists a unique L,(Lg)-solution, u, of (2.4). Furthermore,

ue C(T, B2,
and the map (( 7 g),uo) — u s linear and continuous from the space occurring in
(2.3) to
L,(J,Ly) N C(J,B,2/").
If f, g, and u® are positive then u is positive as well.
COROLLARY 2.2. Suppose that n/(n —1) < p < 0o, that n/2 < o < 00, and
that
a € C(J,Ly2) + Loo(J, Ly).
Put
pn/(n=2) ifp>2,
~\pn/(n—p) ifp<2
Then problem (1.1) has for each u® € L, a unique distributional solution in the
class Lpya(J, Lg).

Proof. Set r := pV 2. Then, denoting by < continuous embedding,
L, = BS, < BT

thanks to 1/q = 1/p — 2/rn. Since —2/r > —2 + 1/q it follows that B, ./" = B, /"
Note that p > n/(n — 1) implies ¢ > n/(n — 2). Thus Theorem 2.1 guarantees that
(1.1) has a unique Lyy2(L,)-solution. Since the space D := D() is dense in L, and
in Ly it is obvious that w is an Lpy2(Lg)-solution of (1.1) iff it is a distributional
solution in the class Lyya(J, Ly). O

We denote by M := M(Q), resp. M(T), the space of all bounded Radon measures
on 2, resp. I'. Then we can formulate our second main result.

THEOREM 2.3. Suppose that n/2 < o < oo and a € Loo(J, Ly). Then prob-
lem (2.4) has for each r € (1,2) and
((f,9),u%) € Ly (J, M x M(T)) x M

a unigque L, (Lg)-solution, for any q € (1,n/(n—1)).
COROLLARY 2.4. Let the hypotheses of Theorem 2.8 be satisfied. Then (1.1)
has for each u® € M a unique distributional solution in the class L.(J, L), for any

qE€ (1,n/(n - 1))
Proof. This follows from Theorem 2.3 and the density of D in Co = M. O
Given the hypotheses of Theorems 2.1 and 2.3, respectively, it can be shown that

the L,(L,)-solution is more regular on J if (f, g) has better regularity properties.
For simplicity, we do not discuss these questions here.
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The proofs of these theorems are given in Section 6. In fact, a more precise
result than Theorem 2.3 is proven there (see Corollary 6.1). We also refer to [3] for
a detailed study of linear parabolic equations involving measures (with respect to
time and space).

3. Maximal regularity

Given Banach spaces F and F, we denote by L(E, F) the Banach space of all
bounded linear maps from E into F. Moreover, Lis(E, F) is the set of all isomor-
phisms in £(E, F'). We write [-, -], for the complex, and (-,-)g,p, 1 < p < 00, for the
real interpolation functors of exponent 8 € (0,1) (cf. [2, Section 1.2] for a summary
of interpolation theory).

d
Let Ey and E; be Banach spaces such that E; — Ey, that is, E; is continuously
and densely embedded in Ey. Then we put

W}‘ (‘L (E07E1)) = LT(‘L El) N I/Vrl(‘]v EO)

It is a Banach space with the norm

ullwe (5,20, 1)) = ullz,(s,E,) + [|Ou]

where 0 is the distributional derivative. Furthermore, setting Ejp , := (Eo, E1)sp
for € (0,1) and 1 < p < o0,

Lr(']aEO)7

d _
Wi (Ja (E07 El)) — C(Ja El/r’,r)
[2, Theorem II1.4.10.2]). Hence vyou := u(0), the trace of u € W.(Ey, E;) at
0, is well-defined. Moreover,
W, . (J, (Eo, Ev)) :== {u € W,(J,(Eo, E1)) 5 u(t) =0}

is for each 7 € J a closed linear subspace of WL (J, (Eo, E1)).
We suppose that 1 < r < oo and denote by MR, (E1, Ey) the set of all opera-
tors A in L(Ey, Eg) such that, given any f € L..(J, Ep), the Cauchy problem
u+ Au = f(t) in J, u(0) =0,

possesses a unique solution v € WL (Ey, E). It follows that MR, (E1, Ey) is open
in L(E1, Ep). Moreover, each A € MR ,.(E1, Ep) is the negative infinitesimal gen-
erator of a strongly continuous analytic semigroup, {e_tA ; t >0} on Ep, that is,
in ,C(EU)

THEOREM 3.1. Suppose that 9 € (0,1), that Ey is an interpolation space of
exponent ¥ between Eqg and Ey, and that

A€ C(J,MR.(E\,Ey)), B € Lo(J,L(E1,Ey)).

(cf.
t=

Then
(a + A + B7 ’YO) € 'CIS(W}« (‘]7 (E07 El))vLT(‘L EO) X El/T’,T) .
For a proof of this theorem, as well as for the assertions preceding it, we refer
to [5].
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4. Stationary operators
Suppose that 1 < ¢ < 0o and put

. {ueHj ; yu=0}, 1/¢<s<2,
H; =

—5\/
(H,%), —2<s<-1+4+1/q,

where the dual spaces are determined by means of (-, -). It follows that

H, = H;, —241/g<s<—-1+1/q, (4.1)

and that L, <> H? (cf. [1, Section 7]). We define A € £(L,,H;?) by
(v,Au)Hq—g = (—Av, u), (v,u) € H), x Ly,

where, given a Banach space E, we write (-, -} g for the duality pairing £’ x E — C.
PROPOSITION 4.1. A € MR,(Ly,H,?) for 1 <r < co.

Proof. For Banach spaces Ey and E; with E; <i> Ey we write A € BIP(FEy, Eyp),
provided A € L(E1,Ep) and —A generates a strongly continuous analytic semi-
group on Ey, and if there exist M,w > 0 and ¥ € (0,7/2) such that

(W + A) | gy < Me? teR

It is known that —Ap € BIP(HZ, L,) (cf. [12], [11], [13], [8], for example).
Hence A € BIP(L,,H;?) by [2, Proposition V.1.5.5 and Theorem V.2.1.3]. From
[2, Theorem I11.4.5.2] and the fact that H ? is isomorphic to L, we infer that H,? is

a UMD space. Thus the assertion is a consequence of the Dore-Venni theorem [9]
(see [2, Theorem II1.4.10.8]). O

Next we prove a simple technical lemma.
LEMMA 4.2. Suppose that n/2 <o < o0 and 1< g < co. Also suppose that

0<7<141/q and either

nfo+7<2<n/¢d+71 (4.2)
or

n—2+71<n/g<n/d. (4.3)
Then

L, x Ly x HifT —=C, (bu,v)~ (v,bu)

s a continuous trilinear map.

Proof. (i) Let (4.2) be satisfied. Then we deduce from Sobolev’s embedding
theorem that

H "< H) 7 < Le, 1/6=1/¢' — (2 —1)/n.



Thus, since (4.2) implies
1 1 1 1
S b4 =—41-(2- <1
a+q+§ U—l— 2-7)/n<1,
the assertion follows from Hélder’s inequality.
(ii) If (4.3) is satisfied then Hg,’T — Cp thanks to 2—7 > n/q'. Since (4.3)
also implies 1/0 + 1/g < 1, Holder’s inequality implies the assertion in this case
also. O

Given a function b, we write M for the multiplication operator v — bu. However,
if no confusion seems likely, we simply denote M} by b.

COROLLARY 4.3. Let the hypotheses of Lemma 4.2 be satisfied. Then

(b — My) € L(Lq, L(Lg, H?)). (4.4)
It is known that
B2 2 = (H,2, Ly)s,r, 0<6<1l, 1<gq,r<oo, (4.5)
where = means ‘equal except for equivalent norms’, and that
H2~2 = [H?, L), 0<20<1+1/q, 1<q< o0, (4.6)

(cf. [1, Theorem 7.1]).
Now we can prove the following maximal regularity result.

THEOREM 4.4. Suppose that n/2 <o < oo and b € L,. Also suppose that
1< g < > and either
2<n/q (4.7)
or
njo <n/q <2. (4.8)
Then A +be MR, (Ly, H,?).
Proof. (i) First suppose that o >n/2. If (4.7) is satisfied then we can fix
7 € (0,1) such that (4.2) is true. If (4.8) is valid then we fix 7 € (0,1) such that
(4.3) holds. Then Corollary 4.3 implies that M, € L(L,, H]~?). Thus, identifying
A and M, with the constant map
(t— A) e C(J,L(Ls, H,?)) and (t— M) € Loo(J, £(Lg, H] %)),
respectively, the assertion follows from (4.6), Proposition 4.1, and Theorem 3.1.
(ii) Now suppose that o = n/2. Proposition 4.1 and the fact that MR,(Ly, H,?)
is open in £(Lg, Hq’z) guarantee the existence of € > 0 such that

A+ C e MR, (Ls, H,?) (4.9)

whenever
C e L(Lg,H?), IC]| <e. (4.10)

Choose d € C(Q) such that ||b—d||z,,, < &/k, where k is the norm of the map (4.4)
for 7 := 0. Then it follows that M;_, satisfies (4.10). Consequently, (4.9) is true for
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this choice of C' Since d € Ly, we infer from (i) that My € L(L,, H;~?) for some
7 € (0,1). Thus, similarly as above,

A+b=(A+My_4)+Mye€ MRT(Lq,H;2).
This proves everything. O

5. Nonautonomous problems
Throughout this section we suppose that
e 1<r<oo, n/2<o<o0.
Then we consider the following hypothesis:
o cither n/(n—2) < q < oo and a € C(J, Ly /3) + Loo(J, L) } (5.1)
o orl<g<n/(n—2)anda€ Loo(J,Ly).
THEOREM 5.1. Let assumption (5.1) be satisfied. Then
0+ A +a,7) € Lis(W(J,(H, 2, L)), L(J,H,?) x B 2/™).

Proof. (i) Suppose that b € C(J, L, /2). Then we deduce from Corollary 4.3 and
Theorem 4.4 that
A+beC(J,MR,(Ls, H;?)).
(ii) Assume that ¢ € Loo(J, Ly). Since o > n/2, part (i) of the proof of Theo-
rem 4.4 shows that there exists 7 € (0,1) such that
M, € Loo(J, £(Lg, H] ).

(iii) Finally, suppose that a € C(J, L,,/2) + Loo(J, Ls). Choose b € C(J, L, s)
and ¢ € Lo (J, Ly) such that a = b+ ¢. Then the theorem follows from (i), (ii), and
Theorem 3.1. O

PROPOSITION 5.2. Let assumption (5.1) be satisfied. Then
-9 —Ap+ae Lis(Wy r(J,(Ly,H2), Ly (J, L))

Proof. First recall that —Ap € MR,/(H?,, Ly). Second, if b € L/, then the
preceding proofs show that M, € £(H§,,Lq/). Furthermore, if b € L, then we can
find 7 € (0,1) such that M, € L(H 5,4, Ly ). Thus an obvious modification of the
proof of Theorem 5.1 implies that

d—Ap +a€ Lis(Wy o(J,(Ly,HY)), L (J, Ly)).

Now the assertion follows by means of the transformation t — T — ¢ (cf. [2, Sub-
section V.2.5]). O

After theses preparations we can prove the following equivalence theorem.

THEOREM 5.3. Let assumption (5.1) be satisfied and suppose that (F,u®)

belongs to H(;2 X Bq_2/T. Then the following are equivalent:



(i) we W (J,(H,;2,L,)) and
O+A+au=F u(0)=u’
(i) w € Ly(J,Lq) and
/(—Btv — Av+av,u)dt = /(U,F) dt + (v(0),u)
J

J
for allv € D([0,T), Do(V)).

Proof. Tt follows from Proposition 5.2 and [2, Propositions V.2.6.2 and V.2.6.3]
that (i) holds iff the integral relation in (ii) is true for all v € Wy, 1.(J, (Ly, H3)).
Thus the assertion is a consequence of the density of D([0,T), Do(R2)) in the latter
space (cf. [3, Lemma 8(i)]). O
6. Proof of the main theorems; generalizations

Now it is easy to prove Theorems 2.1 and 2.3. For this we first observe that the
trace theorem implies 9, € E(Hﬁ,,W;l,/ “(T")). Consequently,

(9y) € L(W,M/9(r), H,?). (6.1)

Proof. (i) Let assumptions (2.2) and (2.3) be satisfied. Put F := f — (3,)'g.
Then it follows from H;° = H;® — H 2 and (6.1) that F' € L,(J,H;?). In fact,

((f,9) = f—(8,)'9) € L(L(J,H,* x W, /9T)), L(J, H,?)).

Now the assertions of Theorem 2.1 — except for the positivity statement — follow
from Theorems 5.1 and 5.3.

The positivity assertion is obtained by an obvious approximation argument (also
see [6, Section 10]).

(ii) Let the assumptions of Theorem 2.3 be satisfied and suppose that

1<g<mn/(n-1).
Then 1/g > 1 — 1/n and, consequently, I/V;l,/q(l") < C(T). From this we deduce that
M(T) — W, Y/9(T).

Furthermore, since 1 > n/¢/,

from which we infer that
Mo HY o H
This and (6.1) imply that
((fag) = f— (81/),9) € E(LT(J,M X M(P)),LT(J, H¢1_2))
for 1 <r < 0.
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Recall that
d
B .. — Co, s>n/qd, 1<r<oo.

Thus M — B 7 for s >n/q" and 1 <r < co. Consequently,
—2
M‘—)Bw/r, 2/r+nfqg>n.
Since n/qg > n — 1 we see that
M<—>B;;2_/T, l<g<n/(n-1)

if 1 <7 < 2. Hence the assertion of Theorem 2.3 follows also from Theorems 5.1
and 5.3. O

COROLLARY 6.1. Suppose that 1 < r < oo. Also suppose that n/2 < o < oo
and a € Loo(J, Ly). Then problem (2.4) has for each

((£,9),u°) € Lp(J,M x M(T)) x M

a unique L,(Lg)-solution, u, provided 1 < ¢ <n/(n—1) and 2/r +n/q>n. The
map

L. (J,Mx M) x M = L,(J,Lg), ((f,9),u°) = u

18 linear and continuous. Furthermore, u > 0 if ((f, g),uo) > 0.

For simplicity, we have restricted ourselves to the model problem (2.4). However,
the following generalizations are possible.

e The operator —A can be replaced by a general uniformly elliptic operator
of the form

—aj (ajkaku) + ajaju,

with a;r = ax; € C'(Q) and aj € Lo (J,C*(Q)) for 1 < j,k < n (summa-
tion convention).

e Neumann or, more generally, conormal boundary conditions can be handled
also.

o Instead of a single equation one can treat strongly coupled normally para-
bolic systems in the sense of [1].

e Higher order systems can be studied as well.

o It suffices to assume that 2 has a compact boundary.

The main problem dealing with these generalizations is the proof of maximal reg-
ularity results for nonautonomous parabolic systems in a weak setting and with
minimal regularity conditions for the coefficients. For this we refer to [5]. In [4]
these results are then applied to nonlinear problems in order to identify and un-
derstand ‘critical exponents’ and derive optimal existence results.
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