Navigation auf zora.uzh.ch

Search ZORA

ZORA (Zurich Open Repository and Archive)

Early cephalopod evolution clarified through Bayesian phylogenetic inference

Pohle, Alexander; Kröger, Björn; Warnock, Rachel C M; King, Andy H; Evans, David H; Aubrechtová, Martina; Cichowolski, Marcela; Fang, Xiang; Klug, Christian (2022). Early cephalopod evolution clarified through Bayesian phylogenetic inference. BMC Biology, 20:88.

Abstract

Background: Despite the excellent fossil record of cephalopods, their early evolution is poorly understood. Different, partly incompatible phylogenetic hypotheses have been proposed in the past, which reflected individual author’s opinions on the importance of certain characters but were not based on thorough cladistic analyses. At the same time, methods of phylogenetic inference have undergone substantial improvements. For fossil datasets, which typically only include morphological data, Bayesian inference and in particular the introduction of the fossilized birth-death model have opened new possibilities. Nevertheless, many tree topologies recovered from these new methods reflect large uncertainties, which have led to discussions on how to best summarize the information contained in the posterior set of trees.
Results: We present a large, newly compiled morphological character matrix of Cambrian and Ordovician cephalopods to conduct a comprehensive phylogenetic analysis and resolve existing controversies. Our results recover three major monophyletic groups, which correspond to the previously recognized Endoceratoidea, Multiceratoidea, and Orthoceratoidea, though comprising slightly different taxa. In addition, many Cambrian and Early Ordovician representatives of the Ellesmerocerida and Plectronocerida were recovered near the root. The Ellesmerocerida is para- and polyphyletic, with some of its members recovered among the Multiceratoidea and early Endoceratoidea. These relationships are robust against modifications of the dataset. While our trees initially seem to reflect large uncertainties, these are mainly a consequence of the way clade support is measured. We show that clade posterior probabilities and tree similarity metrics often underestimate congruence between trees, especially if wildcard taxa are involved.
Conclusions: Our results provide important insights into the earliest evolution of cephalopods and clarify evolutionary pathways. We provide a classification scheme that is based on a robust phylogenetic analysis. Moreover, we provide some general insights on the application of Bayesian phylogenetic inference on morphological datasets. We support earlier findings that quartet similarity metrics should be preferred over the Robinson-Foulds distance when higher-level phylogenetic relationships are of interest and propose that using a posteriori pruned maximum clade credibility trees help in assessing support for phylogenetic relationships among a set of relevant taxa, because they provide clade support values that better reflect the phylogenetic signal.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Paleontology
Dewey Decimal Classification:560 Fossils & prehistoric life
Scopus Subject Areas:Life Sciences > Biotechnology
Life Sciences > Structural Biology
Life Sciences > Ecology, Evolution, Behavior and Systematics
Life Sciences > Physiology
Life Sciences > General Biochemistry, Genetics and Molecular Biology
Life Sciences > General Agricultural and Biological Sciences
Life Sciences > Plant Science
Life Sciences > Developmental Biology
Life Sciences > Cell Biology
Uncontrolled Keywords:Cell Biology, Developmental Biology, Plant Science, General Agricultural and Biological Sciences, General Biochemistry, Genetics and Molecular Biology, Physiology, Ecology, Evolution, Behavior and Systematics, Structural Biology, Biotechnology
Language:English
Date:1 December 2022
Deposited On:19 May 2022 13:39
Last Modified:27 Dec 2024 02:40
Publisher:BioMed Central
ISSN:1741-7007
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/s12915-022-01284-5
PubMed ID:35421982
Download PDF  'Early cephalopod evolution clarified through Bayesian phylogenetic inference'.
Preview
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
17 citations in Web of Science®
18 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

19 downloads since deposited on 19 May 2022
6 downloads since 12 months
Detailed statistics

Authors, Affiliations, Collaborations

Similar Publications