Abstract
We extend the classical one-parameter Yule-Simon law to a version depending on two parameters, which in part appeared in Bertoin (J Stat Phys 176(3):679–691, 2019) in the context of a preferential attachment algorithm with fading memory. By making the link to a general branching process with age-dependent reproduction rate, we study the tail-asymptotic behavior of the two-parameter Yule-Simon law, as it was already initiated in Bertoin (J Stat Phys 176(3):679–691, 2019). Finally, by superposing mutations to the branching process, we propose a model which leads to the two-parameter range of the Yule-Simon law, generalizing thereby the work of Simon (Biometrika 42(3/4):425–440, 1955) on limiting word frequencies.