Abstract
It is proved that for a Riemannian manifold M with nonpositive sectional curvature and finite volume the space of directions at each point in which geodesic rays avoid a sufficiently small neighborhood of a fixed rank 1 vector v∈UM looks very much like a generalized Sierpinski carpet. We also show for nonpositively curved manifolds M with dim M≥ 3 the existence of proper closed flow invariant subsets of the unit tangent bundle UM whose footpoint projection is the whole of M.