Abstract
In this paper we prove that the Benjamin-Ono equation admits an analytic Birkhoff normal form in an open neighborhood of zero in H-0(s) (T, R) for any s > -1/2 where H-0(s) (T, R) denotes the subspace of the Sobolev space H-s(T, R) of elements with mean 0. As an application we show that for any -1/2 < s < 0, the flow map of the Benjamin-Ono equation S-0(t) : H-0(s)(T, R) -> H-0(s) (T, R) is nowhere locally uniformly continuous in a neighborhood of zero in H-0(s)(T, R).
Item Type: | Journal Article, refereed, original work |
---|
Communities & Collections: | 07 Faculty of Science > Institute of Mathematics |
---|
Dewey Decimal Classification: | 510 Mathematics |
---|
Scopus Subject Areas: | Physical Sciences > Analysis
Physical Sciences > Applied Mathematics |
---|
Uncontrolled Keywords: | Applied Mathematics, Analysis ; Benjamin–Ono equation, Analytic Birkhoff normal form, Well-posedness, Solution map, Nowhere locally uniformly continuous maps ; INTERNAL WAVES |
---|
Language: | English |
---|
Date: | 1 March 2022 |
---|
Deposited On: | 04 Aug 2022 16:20 |
---|
Last Modified: | 27 Dec 2024 02:41 |
---|
Publisher: | Elsevier |
---|
ISSN: | 0362-546X |
---|
Additional Information: | MSC primary,37K15 ; secondary, 47B35 |
---|
OA Status: | Closed |
---|
Publisher DOI: | https://doi.org/10.1016/j.na.2021.112687 |
---|
Other Identification Number: | MR4348313 |
---|
Project Information: | - Funder: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
- Grant ID:
- Project Title:
|
---|